码迷,mamicode.com
首页 > 其他好文 > 详细

Precision / Recall 及 F1-score

时间:2015-06-29 19:48:04      阅读:134      评论:0      收藏:0      [点我收藏+]

标签:

技术分享

 

True positive(tp): algorithm predicts 1 and it actually is 1

True negtive(tn): algorithm predicts 0 and it actually is 0

False positive(fp):  algorithm predicts 1 and it actually is 0

False negative(fn): algorithm predicts 0 and it actually is 1

 

Precision: 在所有预测为1结果里面有多少是真实为1

$precision = \frac{True\ positives}{\#predicted\ positives} = \frac{tp}{tp + fp}$

 

Recall: 所有真实为1的有多少能够被成功预测为1

$recall = \frac{True\ positives}{\#actual\ positives} = \frac{tp}{tp + fn}$

 

F1-score: 偏斜集衡量指标

$F_{1}\textrm{-}score = \frac{2PR}{P+R}$

 

Precision / Recall 及 F1-score

标签:

原文地址:http://www.cnblogs.com/freyr/p/4607997.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!