标签:
题意:
构造一个n到m的数的序列,使得任意连续的2个数,3个数,4个数...d个数的和都为合数。
先打素数表,然后DFS搜索,对于每个数都判断它和前面的数的和是否满足条件。
代码:
#include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include<climits> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; #define PB push_back #define MP make_pair #define REP(i,x,n) for(int i=x;i<(n);++i) #define FOR(i,l,h) for(int i=(l);i<=(h);++i) #define FORD(i,h,l) for(int i=(h);i>=(l);--i) #define SZ(X) ((int)(X).size()) #define ALL(X) (X).begin(), (X).end() #define RI(X) scanf("%d", &(X)) #define RII(X, Y) scanf("%d%d", &(X), &(Y)) #define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z)) #define DRI(X) int (X); scanf("%d", &X) #define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y) #define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z) #define OI(X) printf("%d",X); #define RS(X) scanf("%s", (X)) #define MS0(X) memset((X), 0, sizeof((X))) #define MS1(X) memset((X), -1, sizeof((X))) #define LEN(X) strlen(X) #define F first #define S second #define Swap(a, b) (a ^= b, b ^= a, a ^= b) #define Dpoint strcut node{int x,y} #define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME freopen("in.txt","r",stdin); #endif*/ const int MOD = 1e9+7; typedef vector<int> VI; typedef vector<string> VS; typedef vector<double> VD; typedef long long LL; typedef pair<int,int> PII; //#define HOME int Scan() { int res = 0, ch, flag = 0; if((ch = getchar()) == '-') //判断正负 flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数 res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9' ) res = res * 10 + ch - '0'; return flag ? -res : res; } /*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/ int n,m,d; int vis[10000]; int prime[10000]; void getprime() { int cnt=0; for(int i=2;i<=10000;i++) if(!vis[i]) { for(int j=i*i;j<=10000;j+=i) vis[j]=1; } } int vis2[1005]; int ans[1005]; int ok; void dfs(int cur,int sum) {if(ok) return; if(cur==m-n+2) {ok=1; return; } for(int i=n;i<=m;i++) if(!vis2[i]) { if(cur<d) {int ok2=1; int tmp=i; for(int j=cur-1;j>=1;j--) {if(!vis[ans[j]+tmp]) { ok2=0; break; } tmp+=ans[j]; } if(ok2) {vis2[i]=1; ans[cur]=i; dfs(cur+1,sum+i); vis2[i]=0;} } else {int ok2=1; int tmp=i; for(int j=cur-1;j>=cur+1-d;j--) {if(!vis[tmp+ans[j]]) { ok2=0; break; } tmp+=ans[j];} if(ok2) { vis2[i]=1; ans[cur]=i; dfs(cur+1,sum-ans[cur-d+1]+i); vis2[i]=0; } } if(ok) return; } } int main() {getprime(); while(RIII(n,m,d)!=EOF) { if(!n&&!m&&!d) break; MS0(vis2); ok=0; dfs(1,0); if(!ok) {printf("No anti-prime sequence exists.\n"); continue;} REP(i,1,m-n+1) printf("%d,",ans[i]); printf("%d\n",ans[m-n+1]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/u013840081/article/details/46697891