首页
Web开发
Windows程序
编程语言
数据库
移动开发
系统相关
微信
其他好文
会员
首页
>
其他好文
> 详细
(转贼)一道经典概率问题
时间:
2015-07-01 15:43:27
阅读:
131
评论:
0
收藏:
0
[点我收藏+]
标签:
之前在哪部电影里面有这个桥段来着~
本文转载自nju_hupeng
《zt 一道经典概率题的终极解法》
今天在精华区看见了关于那道经典概率题的讨论,一长串帖子,虽然“标准”解法在那里,但是标准解法的方法在不断的诘问面前说服力不够。在一番思考之后,我觉得我找到了一个比较有说服力的方法,即用贝叶斯公式避免先验后验的纠缠。 不知我的逻辑对否,欢迎大家指正:
经典题目:
有三个门,里面有一个里有汽车,如果选对了就可以得到这辆车,
当应试者选定一个门之后,主持人打开了另外一个门,空的。
问应试者要不要换一个选择。
假设主持人知道车所在的那个门。
经典解法(结论倒是正确的):
第一次选择正确的概率是1/3
因此汽车在另外两个门里的概率是2/3
主持人指出一个门,如果你开始选错了(2/3概率),则剩下的那个门里100%有汽车
如果你第一次选对(1/3)了,剩下那个门里100%没汽车。
所以主持人提示之后,你不换的话正确概率是1/3*100%+2/3*0=1/3
你换的话正确概率是1/3*0+2/3*100%=2/3
我先说说这个经典解法的问题吧。对于这个解法的诘问就在于,现在主持人已经打开一个空门了(而且主持人是有意打开这个门的),在这一 “信息” 出现后,还能说当初选错的概率是2/3吗?这一后验事实不会改变我们对于先验概率的看法吗?答案是会的。更具体地说,主持人打开一扇门后,对当初选择错误的概率估计不一定等于2/3。
从头说起。假设我选了B门,假设主持人打开了C门,那么他在什么情况下会打开C门呢?
若A有车(先验概率P=1/3),那主持人100%打开C门(他显然不会打开B);
若B有车(先验概率P=1/3),那此时主持人有A和C两个选择,假设他以K的概率打开C(一般K=1/2,但我们暂把它设成变量);
若C有车(先验概率P=1/3),那主持人打开C的概率为0(只要他不傻。。。)
已知他打开了C,那根据贝叶斯公式——这里P(M|N)表示N事件发生时M事件发生的概率:
P(B有车 | C打开)=P(B有车 | C打开)/ P(C打开)= (1/3)*K / [(1/3)*1+(1/3)*K] = K / (K+1)
该值何时等于1/3 呢(也就是经典解法里的假设)? 只有 K=1/2 时。 也就是一般情况下。但如果主持人有偏好,比方说他就是喜欢打开右边的门(假设C在右边),设K=3/4, 那么B有车的概率就变成了 3/5,不再是1/3,后验事实改变了先验概率的估计!
但这并不改变正确的选择,我们仍然应该改选A门, 解释如下:
P(A有车 | C打开)= P(A有车 | C打开)/P(C打开)=(1/3)*1 / [(1/3)*1+(1/3)*K] =1/(K+1)
而K < 1(假设主持人没有极端到非C不选的程度),
所以永远有 P(B有车 | C打开) < P( A有车 | C打开)
A有车的概率永远比B大,我们还是应该改变选择。
这个解法的重点在于考虑了C被打开这个事实的影响,从而消除了关于先验后验的纷扰。
(转贼)一道经典概率问题
标签:
原文地址:http://www.cnblogs.com/fkissx/p/4613238.html
踩
(
0
)
赞
(
0
)
举报
评论
一句话评论(
0
)
登录后才能评论!
分享档案
更多>
2021年07月29日 (22)
2021年07月28日 (40)
2021年07月27日 (32)
2021年07月26日 (79)
2021年07月23日 (29)
2021年07月22日 (30)
2021年07月21日 (42)
2021年07月20日 (16)
2021年07月19日 (90)
2021年07月16日 (35)
周排行
更多
分布式事务
2021-07-29
OpenStack云平台命令行登录账户
2021-07-29
getLastRowNum()与getLastCellNum()/getPhysicalNumberOfRows()与getPhysicalNumberOfCells()
2021-07-29
【K8s概念】CSI 卷克隆
2021-07-29
vue3.0使用ant-design-vue进行按需加载原来这么简单
2021-07-29
stack栈
2021-07-29
抽奖动画 - 大转盘抽奖
2021-07-29
PPT写作技巧
2021-07-29
003-核心技术-IO模型-NIO-基于NIO群聊示例
2021-07-29
Bootstrap组件2
2021-07-29
友情链接
兰亭集智
国之画
百度统计
站长统计
阿里云
chrome插件
新版天听网
关于我们
-
联系我们
-
留言反馈
© 2014
mamicode.com
版权所有 联系我们:gaon5@hotmail.com
迷上了代码!