2 10 3 5 10 3 10 3 3 2 5 3 6 7 10 5 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9
28 46 80
思路:这里用到费用流求解,首先添加一个超级源点s=0和超级汇点t=n*n+1,然后对每个点拆点, i 向 i` 连边,容量为1,花费为该点的权值mp[i][j],然后s与 1` 连边,容量为2,花费为0,n*n向t连边,容量为2,花费为0,最后矩阵中的点之间连边,容量为1,花费为0。最后答案为cost+mp[1][1]+mp[n][n]。注意数组的大小。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r #define FRE(i,a,b) for(i = a; i <= b; i++) #define FREE(i,a,b) for(i = a; i >= b; i--) #define FRL(i,a,b) for(i = a; i < b; i++) #define FRLL(i,a,b) for(i = a; i > b; i--) #define mem(t, v) memset ((t) , v, sizeof(t)) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define DBG pf("Hi\n") typedef long long ll; using namespace std; const int MAXN = 2000; //注意数组的大小 const int MAXM = 100000; struct Edge { int to,next,cap,flow,cost; }edge[MAXM]; int head[MAXN],tol; int pre[MAXN],dis[MAXN]; bool vis[MAXN]; int N,n,m; void init(int n) { N=n; tol=0; memset(head,-1,sizeof(head)); } void addedge(int u,int v,int cap,int cost) { edge[tol].to=v; edge[tol].cap=cap; edge[tol].cost=cost; edge[tol].flow=0; edge[tol].next=head[u]; head[u]=tol++; edge[tol].to=u; edge[tol].cap=0; edge[tol].cost=-cost; edge[tol].flow=0; edge[tol].next=head[v]; head[v]=tol++; } bool spfa(int s,int t) { queue<int>q; for (int i=0;i<N;i++) { dis[i]=-INF; vis[i]=false; pre[i]=-1; } dis[s]=0; vis[s]=true; q.push(s); while (!q.empty()) { int u=q.front(); q.pop(); vis[u]=false; for (int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] < dis[u] + edge[i].cost) { dis[v]=dis[u] + edge[i].cost; pre[v]=i; if (!vis[v]) { vis[v]=true; q.push(v); } } } } if (pre[t]==-1) return false; else return true; } int minCostMaxflow(int s,int t,int &cost) { int flow=0; cost=0; while (spfa(s,t)) { int Min=INF; for (int i=pre[t];i!=-1;i=pre[edge[i^1].to]) { if (Min > edge[i].cap-edge[i].flow) Min=edge[i].cap-edge[i].flow; } for (int i=pre[t];i!=-1;i=pre[edge[i^1].to]) { edge[i].flow+=Min; edge[i^1].flow-=Min; cost+=edge[i].cost*Min; } flow+=Min; } return flow; } int mp[MAXN][MAXN]; int main() { #ifndef ONLINE_JUDGE freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin); #endif int i,j,t; while (~sf(n)) { init(2*n*n+2); FRE(i,1,n) FRE(j,1,n) sf(mp[i][j]); addedge(0,1+n*n,2,0); addedge(n*n,2*n*n+1,2,0); FRE(i,1,n) FRE(j,1,n) { addedge((i-1)*n+j,(i-1)*n+j+n*n,1,mp[i][j]); if (j+1<=n) addedge((i-1)*n+n*n+j,(i-1)*n+j+1,1,0); if (i+1<=n) addedge((i-1)*n+j+n*n,i*n+j,1,0); } int cost; int ans=minCostMaxflow(0,N-1,cost); printf("%d\n",cost+mp[1][1]+mp[n][n]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u014422052/article/details/46763039