标签:
MATLAB基础知识
l Imread: 读取图片信息;
l axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax])
设置 x、y 和 z 轴范围以及颜色缩放范围(请参阅 caxis
)。v =
axis 返回包含 x、y 和 z 轴缩放因子的行矢量。v
具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维。返回值是当前坐标轴的 XLim
、Ylim
和 ZLim
属性。 基于 x、y 和 z 数据的最小值和最大值,axis auto
自动设置 MATLAB® 默认行为以计算当前坐标轴范围。可以将该自动行为限制为特定轴。例如,axis
‘auto
x‘
仅自动计算 x 轴范围;axis‘auto yz‘
自动计算 y 和 z 轴范围。
l bsxfun
对两个数组应用基于元素的二进制操作(启用单一扩展)
用 bsxfun 减去的矩阵 A
对应列元素的列均值。
A = [1 2 10; 1 4 20;1 6 15] ;
C = bsxfun(@minus, A, mean(A))
C =
0 -2 -5
0 0 5
0 2 0
@plus |
加 |
@minus |
减 |
@times |
数组乘法 |
@rdivide |
数组右除 |
@ldivide |
数组左除 |
@power |
数组幂 |
@max |
二进制最大值 |
@min |
二进制最小值 |
@rem |
除后的余数 |
@mod |
除后的模数 |
@atan2 |
四象限反切线;以弧度表示结果 |
@atan2d |
四象限反切线;以度表示结果 |
@hypot |
平方和的平方根 |
@eq |
等于 |
@ne |
不等于 |
@lt |
小于 |
@le |
小于或等于 |
@gt |
大于 |
@ge |
大于或等于 |
@and |
按元素逻辑 AND |
@or |
按元素逻辑 OR |
@xor |
逻辑异 OR |
l 奇异值分解:
svd 命令计算矩阵奇异值分解。
s =
svd(X)
返回奇异值的矢量。
[U,S,V] =
svd(X)
生成维度与 X
相同的对角矩阵 S
(包含以降序排列的非负对角线元素)以及单位矩阵 U
和 V
,这样 X = U*S*V‘
。
[U,S,V] =
svd(X,0)
生成大小合适的分解。如果 X
是 m×n(其中 m > n),则 svd 仅计算 U
的前 n
列,并且 S
是 n×n。
[U,S,V] =
svd(X,‘econ‘)
也生成大小合适的分解。如果
X
是 m×n(其中 m >= n),则它等于 svd(X,0)
。对于 m < n,仅计算 V
的前 m 列并且 S
是 m×m。
对于矩阵
X =
1 2
3 4
5 6
7 8
语句
[U,S,V] = svd(X)
生成
U =
-0.1525 -0.8226 -0.3945 -0.3800
-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407
S =
14.2691 0
0 0.6268
0 0
0 0
V =
-0.6414 0.7672
-0.7672 -0.6414
聚类是非监督模型不带标签
KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。
K-Means聚类算法主要分为三个步骤:
(1)第一步是为待聚类的点寻找聚类中心
(2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去
(3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心
反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止
数据kmeans具体过程:
1:设置中心点:初始化,
2:找到每个点的所属最近簇
Function idx = findClosestCentroids(X, initial_centroids);
3:训练数据找到每个簇的数据,将数据进行归属簇i。并且重新求每个簇的中心点
4:将数据迭代计算中心点基本达到中心点不变为;迭代训练找到中心对
测试集和验证集进行验证。
人脸识别,
和数据压缩(将100维的数据降到10维压缩率为90%)。
l 假设将数据的维数从 R N 降到 R 3 ,具体的 PCA 分析步骤如下:
数据压缩
l 均值归一化;第一步计算矩阵 X 的样本的协方差矩阵 S :
[X_norm, mu, sigma] = featureNormalize(X);
求平均值;和协方差
mu = mean(X);平均值
X_norm = bsxfun(@minus, X, mu);
sigma = std(X_norm);协方差
X_norm = bsxfun(@rdivide, X_norm, sigma)
l 奇异值分解:
sigma = X‘*X/m;
[U, S, V] = svd(sigma);
l 找到平面上的一维平面
Z = X*U(:, 1:K);
将所有数据垂直折射到一维平面上
hold on;
plot(X_rec(:, 1), X_rec(:, 2), ‘ro‘);
for i = 1:size(X_norm, 1)
drawLine(X_norm(i,:), X_rec(i,:), ‘--k‘, ‘LineWidth‘, 1);
end
hold off
将bird 中的数据进行提取降维
1:读取数据数据归一化:
A = double(imread(‘bird_small.png‘));
A = A / 255;
img_size = size(A);
X = reshape(A, img_size(1) * img_size(2), 3);
2:kmeans训练特征将3d数据投射到2d曲面上
sel = floor(rand(1000, 1) * size(X, 1)) + 1;
palette = hsv(K);
colors = palette(idx(sel), :);
3:画出23d的图像;
人脸识别:
l 基本原理:
1主成分分析(PCA)的原理就是将一个高维向量x,通过一个特殊的特征向量矩阵U,投影到一个低维的向量空间中,表征为一个低维向量y,并且仅仅损失了一些次要信息。也就是说,通过低维表征的向量和特征向量矩阵,可以基本重构出所对应的原始高维向量。
在人脸识别中,特征向量矩阵U称为特征脸(eigenface)空间,因此其中的特征向量ui进行量化后可以看出人脸轮廓,在下面的实验中可以看出。
以人脸识别为例,说明下PCA的应用。
设有N个人脸训练样本,每个样本由其像素灰度值组成一个向量xi,则样本图像的像素点数即为xi的维数,M=width*height ,由向量构成的训练样本集为 。
该样本集的平均向量为:
平均向量又叫平均脸。
样本集的协方差矩阵为:
求出协方差矩阵的特征向量ui和对应的特征值 ,这些特征向量组成的矩阵U就是人脸空间的正交基底,用它们的线性组合可以重构出样本中任意的人脸图像,(如果有朋友不太理解这句话的意思,请看下面的总结2。)并且图像信息集中在特征值大的特征向量中,即使丢弃特征值小的向量也不会影响图像质量。
将协方差矩阵的特征值按大到小排序: 。由大于 的 对应的特征向量构成主成分,主成分构成的变换矩阵为:
这样每一幅人脸图像都可以投影到 构成的特征脸子空间中,U的维数为M×d。有了这样一个降维的子空间,任何一幅人脸图像都可以向其作投影 ,即并获得一组坐标系数,即低维向量y,维数d×1,为称为KL分解系数。这组系数表明了图像在子空间的位置,从而可以作为人脸识别的依据。
有朋友可能不太理解,第一部分讲K-L变换的时候,求的是相关矩阵 的特征向量和特征值,这里怎么求的是协方差矩阵 ?
其实协方差矩阵也是:
,可以看出其实 用代替x就成了相关矩阵R,相当于原始样本向量都减去个平均向量,实质上还是一样的,协方差矩阵也是实对称矩阵。
总结下:
1、在人脸识别过程中,对输入的一个测试样本x,求出它与平均脸的偏差 ,则 在特征脸空间U的投影,可以表示为系数向量y:
U的维数为M×d, 的维数为M×1,y的维数d×1。若M为200*200=40000维,取200个主成分,即200个特征向量,则最后投影的系数向量y维数降维200维。
2、根据1中的式子,可以得出:
这里的x就是根据投影系数向量y重构出的人脸图像,丢失了部分图像信息,但不会影响图像质量。
Matlab 基本函数:
部分函数说明如下:
Mat Mat::reshape(int cn, int rows=0) const
该函数是改变Mat的尺寸,即保持尺寸大小=行数*列数*通道数 不变。其中第一个参数为变换后Mat的通道数,如果为0,代表变换前后通道数不变。第二个参数为变换后Mat的行数,如果为0也是代表变换前后通道数不变。但是该函数本身不复制数据。
void Mat::convertTo(OutputArray m, int rtype, double alpha=1, double beta=0 ) const
该函数其实是对原Mat的每一个值做一个线性变换。参数1为目的矩阵,参数2为目d矩阵的类型,参数3和4变换的系数,看完下面的公式就明白了:
PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
该构造函数的第一个参数为要进行PCA变换的输入Mat;参数2为该Mat的均值向量;参数3为输入矩阵数据的存储方式,如果其值为CV_PCA_DATA_AS_ROW则说明输入Mat的每一行代表一个样本,同理当其值为CV_PCA_DATA_AS_COL时,代表输入矩阵的每一列为一个样本;最后一个参数为该PCA计算时保留的最大主成分的个数。如果是缺省值,则表示所有的成分都保留。
Mat PCA::project(InputArray vec) const
该函数的作用是将输入数据vec(该数据是用来提取PCA特征的原始数据)投影到PCA主成分空间中去,返回每一个样本主成分特征组成的矩阵。因为经过PCA处理后,原始数据的维数降低了,因此原始数据集中的每一个样本的维数都变了,由改变后的样本集就组成了本函数的返回值。下面由一个图说明:
Mat PCA::backProject(InputArray vec) const
一般调用backProject()函数前需调用project()函数,因为backProject()函数的参数vec就是经过PCA投影降维过后的矩阵dst。 因此backProject()函数的作用就是用vec来重构原始数据集(关于该函数的本质就是上面总结2的公式)。由一个图说明如下:
另外PCA类中还有几个成员变量,mean,eigenvectors, eigenvalues等分别对应着原始数据的均值,协方差矩阵的特征值和特征向量。
具体步骤:
1) 加载图片:
load (‘ex7faces.mat‘)
displayData(X(1:100, :))
2) 降维操作
[X_norm, mu, sigma] = featureNormalize(X);
% Run PCA
[U, S] = pca(X_norm);
3) 将降维之后的特征一样的进行聚类然后进行识别为同一个人
重复操作进行分类:
X_rec = Z * U(:, 1:K)‘;
1: %% Machine Learning Online Class % Exercise 7 | Principle Component Analysis and K-Means Clustering % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % pca.m % projectData.m % recoverData.m % computeCentroids.m % findClosestCentroids.m % kMeansInitCentroids.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% ================= Part 1: Find Closest Centroids ==================== % To help you implement K-Means, we have divided the learning algorithm % into two functions -- findClosestCentroids and computeCentroids. In this % part, you shoudl complete the code in the findClosestCentroids function. % fprintf(‘Finding closest centroids.\n\n‘); % Load an example dataset that we will be using load(‘ex7data2.mat‘); % Select an initial set of centroids K = 3; % 3 Centroids %定义三簇 initial_centroids = [3 3; 6 2; 8 5]; %定义每个簇的中心点 % Find the closest centroids for the examples using the % initial_centroids idx = findClosestCentroids(X, initial_centroids); fprintf(‘Closest centroids for the firxst 3 examples: \n‘) fprintf(‘ %d‘, idx(1:3)); fprintf(‘\n(the closest centroids should be 1, 3, 2 respectively)\n‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% ===================== Part 2: Compute Means ========================= % After implementing the closest centroids function, you should now % complete the computeCentroids function. % fprintf(‘\nComputing centroids means.\n\n‘); % Compute means based on the closest centroids found in the previous part. centroids = computeCentroids(X, idx, K); fprintf(‘Centroids computed after initial finding of closest centroids: \n‘) fprintf(‘ %f %f \n‘ , centroids‘); fprintf(‘\n(the centroids should be\n‘); fprintf(‘ [ 2.428301 3.157924 ]\n‘); fprintf(‘ [ 5.813503 2.633656 ]\n‘); fprintf(‘ [ 7.119387 3.616684 ]\n\n‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% =================== Part 3: K-Means Clustering ====================== % After you have completed the two functions computeCentroids and % findClosestCentroids, you have all the necessary pieces to run the % kMeans algorithm. In this part, you will run the K-Means algorithm on % the example dataset we have provided. % fprintf(‘\nRunning K-Means clustering on example dataset.\n\n‘); % Load an example dataset load(‘ex7data2.mat‘); % Settings for running K-Means K = 3; max_iters = 10; % For consistency, here we set centroids to specific values % but in practice you want to generate them automatically, such as by % settings them to be random examples (as can be seen in % kMeansInitCentroids). initial_centroids = [3 3; 6 2; 8 5]; % Run K-Means algorithm. The ‘true‘ at the end tells our function to plot % the progress of K-Means 找到每个训练集最近的簇节点 训练特征值然后改变节点位置 [centroids, idx] = runkMeans(X, initial_centroids, max_iters, true); fprintf(‘\nK-Means Done.\n\n‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% ============= Part 4: K-Means Clustering on Pixels =============== % In this exercise, you will use K-Means to compress an image. To do this, % you will first run K-Means on the colors of the pixels in the image and % then you will map each pixel on to it‘s closest centroid. % % You should now complete the code in kMeansInitCentroids.m % fprintf(‘\nRunning K-Means clustering on pixels from an image.\n\n‘); % Load an image of a bird A = double(imread(‘bird_small.png‘)); % If imread does not work for you, you can try instead % load (‘bird_small.mat‘); A = A / 255; % Divide by 255 so that all values are in the range 0 - 1 %将数据归一化 % Size of the image img_size = size(A); % Reshape the image into an Nx3 matrix where N = number of pixels. % Each row will contain the Red, Green and Blue pixel values % This gives us our dataset matrix X that we will use K-Means on. X = reshape(A, img_size(1) * img_size(2), 3); % Run your K-Means algorithm on this data % You should try different values of K and max_iters here K = 16; max_iters = 10; % When using K-Means, it is important the initialize the centroids % randomly. % You should complete the code in kMeansInitCentroids.m before proceeding initial_centroids = kMeansInitCentroids(X, K); % Run K-Means [centroids, idx] = runkMeans(X, initial_centroids, max_iters); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% ================= Part 5: Image Compression ====================== % In this part of the exercise, you will use the clusters of K-Means to % compress an image. To do this, we first find the closest clusters for % each example. After that, we fprintf(‘\nApplying K-Means to compress an image.\n\n‘); % Find closest cluster members idx = findClosestCentroids(X, centroids); % Essentially, now we have represented the image X as in terms of the % indices in idx. % We can now recover the image from the indices (idx) by mapping each pixel % (specified by it‘s index in idx) to the centroid value X_recovered = centroids(idx,:); % Reshape the recovered image into proper dimensions X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3); % Display the original image subplot(1, 2, 1); imagesc(A); title(‘Original‘); % Display compressed image side by side subplot(1, 2, 2); imagesc(X_recovered) title(sprintf(‘Compressed, with %d colors.‘, K)); fprintf(‘Program paused. Press enter to continue.\n‘); pause; 2: %% Machine Learning Online Class % Exercise 7 | Principle Component Analysis and K-Means Clustering % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % pca.m % projectData.m % recoverData.m % computeCentroids.m % findClosestCentroids.m % kMeansInitCentroids.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% ================== Part 1: Load Example Dataset =================== % We start this exercise by using a small dataset that is easily to % visualize % fprintf(‘Visualizing example dataset for PCA.\n\n‘); % The following command loads the dataset. You should now have the % variable X in your environment load (‘ex7data1.mat‘); % Visualize the example dataset plot(X(:, 1), X(:, 2), ‘bo‘); axis([0.5 6.5 2 8]); axis square; fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% =============== Part 2: Principal Component Analysis =============== % You should now implement PCA, a dimension reduction technique. You % should complete the code in pca.m % fprintf(‘\nRunning PCA on example dataset.\n\n‘); % Before running PCA, it is important to first normalize X [X_norm, mu, sigma] = featureNormalize(X); % Run PCA [U, S] = pca(X_norm); % Compute mu, the mean of the each feature % Draw the eigenvectors centered at mean of data. These lines show the % directions of maximum variations in the dataset. hold on; drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)‘, ‘-k‘, ‘LineWidth‘, 2); drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)‘, ‘-k‘, ‘LineWidth‘, 2); hold off; fprintf(‘Top eigenvector: \n‘); fprintf(‘ U(:,1) = %f %f \n‘, U(1,1), U(2,1)); fprintf(‘\n(you should expect to see -0.707107 -0.707107)\n‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% =================== Part 3: Dimension Reduction =================== % You should now implement the projection step to map the data onto the % first k eigenvectors. The code will then plot the data in this reduced % dimensional space. This will show you what the data looks like when % using only the corresponding eigenvectors to reconstruct it. % % You should complete the code in projectData.m % fprintf(‘\nDimension reduction on example dataset.\n\n‘); % Plot the normalized dataset (returned from pca) plot(X_norm(:, 1), X_norm(:, 2), ‘bo‘); axis([-4 3 -4 3]); axis square % Project the data onto K = 1 dimension K = 1; Z = projectData(X_norm, U, K); fprintf(‘Projection of the first example: %f\n‘, Z(1)); fprintf(‘\n(this value should be about 1.481274)\n\n‘); X_rec = recoverData(Z, U, K); fprintf(‘Approximation of the first example: %f %f\n‘, X_rec(1, 1), X_rec(1, 2)); fprintf(‘\n(this value should be about -1.047419 -1.047419)\n\n‘); % Draw lines connecting the projected points to the original points hold on; plot(X_rec(:, 1), X_rec(:, 2), ‘ro‘); for i = 1:size(X_norm, 1) drawLine(X_norm(i,:), X_rec(i,:), ‘--k‘, ‘LineWidth‘, 1); end hold off fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% =============== Part 4: Loading and Visualizing Face Data ============= % We start the exercise by first loading and visualizing the dataset. % The following code will load the dataset into your environment % fprintf(‘\nLoading face dataset.\n\n‘); % Load Face dataset load (‘ex7faces.mat‘) % Display the first 100 faces in the dataset displayData(X(1:100, :)); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% =========== Part 5: PCA on Face Data: Eigenfaces =================== % Run PCA and visualize the eigenvectors which are in this case eigenfaces % We display the first 36 eigenfaces. % fprintf([‘\nRunning PCA on face dataset.\n‘ ... ‘(this mght take a minute or two ...)\n\n‘]); % Before running PCA, it is important to first normalize X by subtracting % the mean value from each feature [X_norm, mu, sigma] = featureNormalize(X); % Run PCA [U, S] = pca(X_norm); % Visualize the top 36 eigenvectors found displayData(U(:, 1:36)‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% ============= Part 6: Dimension Reduction for Faces ================= % Project images to the eigen space using the top k eigenvectors % If you are applying a machine learning algorithm fprintf(‘\nDimension reduction for face dataset.\n\n‘); K = 100; Z = projectData(X_norm, U, K); fprintf(‘The projected data Z has a size of: ‘) fprintf(‘%d ‘, size(Z)); fprintf(‘\n\nProgram paused. Press enter to continue.\n‘); pause; %% ==== Part 7: Visualization of Faces after PCA Dimension Reduction ==== % Project images to the eigen space using the top K eigen vectors and % visualize only using those K dimensions % Compare to the original input, which is also displayed fprintf(‘\nVisualizing the projected (reduced dimension) faces.\n\n‘); K = 100; X_rec = recoverData(Z, U, K); % Display normalized data subplot(1, 2, 1); displayData(X_norm(1:100,:)); title(‘Original faces‘); axis square; % Display reconstructed data from only k eigenfaces subplot(1, 2, 2); displayData(X_rec(1:100,:)); title(‘Recovered faces‘); axis square; fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization === % One useful application of PCA is to use it to visualize high-dimensional % data. In the last K-Means exercise you ran K-Means on 3-dimensional % pixel colors of an image. We first visualize this output in 3D, and then % apply PCA to obtain a visualization in 2D. close all; close all; clc % Re-load the image from the previous exercise and run K-Means on it % For this to work, you need to complete the K-Means assignment first A = double(imread(‘bird_small.png‘)); % If imread does not work for you, you can try instead % load (‘bird_small.mat‘); A = A / 255; img_size = size(A); X = reshape(A, img_size(1) * img_size(2), 3); K = 16; max_iters = 10; initial_centroids = kMeansInitCentroids(X, K); [centroids, idx] = runkMeans(X, initial_centroids, max_iters); % Sample 1000 random indexes (since working with all the data is % too expensive. If you have a fast computer, you may increase this. sel = floor(rand(1000, 1) * size(X, 1)) + 1; % Setup Color Palette palette = hsv(K); colors = palette(idx(sel), :); % Visualize the data and centroid memberships in 3D figure; scatter3(X(sel, 1), X(sel, 2), X(sel, 3), 10, colors); title(‘Pixel dataset plotted in 3D. Color shows centroid memberships‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; %% === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization === % Use PCA to project this cloud to 2D for visualization % Subtract the mean to use PCA [X_norm, mu, sigma] = featureNormalize(X); % PCA and project the data to 2D [U, S] = pca(X_norm); Z = projectData(X_norm, U, 2); % Plot in 2D figure; plotDataPoints(Z(sel, :), idx(sel), K); title(‘Pixel dataset plotted in 2D, using PCA for dimensionality reduction‘); fprintf(‘Program paused. Press enter to continue.\n‘); pause; 3: function [centroids, idx] = runkMeans(X, initial_centroids, ... max_iters, plot_progress) %RUNKMEANS runs the K-Means algorithm on data matrix X, where each row of X %is a single example % [centroids, idx] = RUNKMEANS(X, initial_centroids, max_iters, ... % plot_progress) runs the K-Means algorithm on data matrix X, where each % row of X is a single example. It uses initial_centroids used as the % initial centroids. max_iters specifies the total number of interactions % of K-Means to execute. plot_progress is a true/false flag that % indicates if the function should also plot its progress as the % learning happens. This is set to false by default. runkMeans returns % centroids, a Kxn matrix of the computed centroids and idx, a m x 1 % vector of centroid assignments (i.e. each entry in range [1..K]) % % Set default value for plot progress if ~exist(‘plot_progress‘, ‘var‘) || isempty(plot_progress) plot_progress = false; end % Plot the data if we are plotting progress if plot_progress figure; hold on; end % Initialize values [m n] = size(X); K = size(initial_centroids, 1); centroids = initial_centroids; previous_centroids = centroids; idx = zeros(m, 1); % Run K-Means for i=1:max_iters % Output progress fprintf(‘K-Means iteration %d/%d...\n‘, i, max_iters); if exist(‘OCTAVE_VERSION‘) fflush(stdout); end % For each example in X, assign it to the closest centroid idx = findClosestCentroids(X, centroids); %接着调用找最近节点的函数指导训练结束 % Optionally, plot progress here if plot_progress plotProgresskMeans(X, centroids, previous_centroids, idx, K, i); previous_centroids = centroids; fprintf(‘Press enter to continue.\n‘); pause; end % Given the memberships, compute new centroids centroids = computeCentroids(X, idx, K); end % Hold off if we are plotting progress if plot_progress hold off; end end 4: function centroids = computeCentroids(X, idx, K) %COMPUTECENTROIDS returs the new centroids by computing the means of the %data points assigned to each centroid. % centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by % computing the means of the data points assigned to each centroid. It is % given a dataset X where each row is a single data point, a vector % idx of centroid assignments (i.e. each entry in range [1..K]) for each % example, and K, the number of centroids. You should return a matrix % centroids, where each row of centroids is the mean of the data points % assigned to it. % % Useful variables [m n] = size(X); % You need to return the following variables correctly. centroids = zeros(K, n); % ====================== YOUR CODE HERE ====================== % Instructions: Go over every centroid and compute mean of all points that % belong to it. Concretely, the row vector centroids(i, :) % should contain the mean of the data points assigned to % centroid i. % % Note: You can use a for-loop over the centroids to compute this. % for i = 1:K, k = find(idx==i);%注意这里不要写成一个等号,第一次就写错了 num = size(k, 1); %分类将属于每个簇的数据放到一起 centroids(i,:) = sum(X(k,:),1)/num; %将每个簇中的数据进行求中心点 end; % ============================================================= end 5; function [h, display_array] = displayData(X, example_width) %DISPLAYDATA Display 2D data in a nice grid % [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data % stored in X in a nice grid. It returns the figure handle h and the % displayed array if requested. % Set example_width automatically if not passed in if ~exist(‘example_width‘, ‘var‘) || isempty(example_width) example_width = round(sqrt(size(X, 2))); end % Gray Image colormap(gray); % Compute rows, cols [m n] = size(X); example_height = (n / example_width); % Compute number of items to display display_rows = floor(sqrt(m)); display_cols = ceil(m / display_rows); % Between images padding pad = 1; % Setup blank display display_array = - ones(pad + display_rows * (example_height + pad), ... pad + display_cols * (example_width + pad)); % Copy each example into a patch on the display array curr_ex = 1; for j = 1:display_rows for i = 1:display_cols if curr_ex > m, break; end % Copy the patch % Get the max value of the patch max_val = max(abs(X(curr_ex, :))); display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ... pad + (i - 1) * (example_width + pad) + (1:example_width)) = ... reshape(X(curr_ex, :), example_height, example_width) / max_val; curr_ex = curr_ex + 1; end if curr_ex > m, break; end end % Display Image h = imagesc(display_array, [-1 1]); % Do not show axis axis image off drawnow; end 6: function [X_norm, mu, sigma] = featureNormalize(X) %FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard deviation % is 1. This is often a good preprocessing step to do when % working with learning algorithms. mu = mean(X); X_norm = bsxfun(@minus, X, mu); sigma = std(X_norm); X_norm = bsxfun(@rdivide, X_norm, sigma); % ============================================================ end 8: function centroids = kMeansInitCentroids(X, K) %KMEANSINITCENTROIDS This function initializes K centroids that are to be %used in K-Means on the dataset X % centroids = KMEANSINITCENTROIDS(X, K) returns K initial centroids to be % used with the K-Means on the dataset X % % You should return this values correctly centroids = zeros(K, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should set centroids to randomly chosen examples from % the dataset X % % ============================================================= end
标签:
原文地址:http://www.cnblogs.com/meng-qing/p/4623029.html