原文如下:
/***************************************************************************************** Boosting * \****************************************************************************************/ /* * CvBoostType * * The CvBoostType enumeration specifies the boosting type. * * Remarks * Four different boosting variants for 2 class classification problems are supported: * Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle AdaBoost. * The L2 (2 class classification problems) and LK (K class classification problems) * algorithms are close to LogitBoost but more numerically stable than last one. * For regression three different loss functions are supported: * Least square, least absolute deviation and huber loss. */ typedef enum CvBoostType { CV_DABCLASS = 0, /* 2 class Discrete AdaBoost */ CV_RABCLASS = 1, /* 2 class Real AdaBoost */ CV_LBCLASS = 2, /* 2 class LogitBoost */ CV_GABCLASS = 3, /* 2 class Gentle AdaBoost */ CV_L2CLASS = 4, /* classification (2 class problem) */ CV_LKCLASS = 5, /* classification (K class problem) */ CV_LSREG = 6, /* least squares regression */ CV_LADREG = 7, /* least absolute deviation regression */ CV_MREG = 8 /* M-regression (Huber loss) */ } CvBoostType;
/***************************************************************************************** Boosting * \****************************************************************************************/ /* * CvBoostType * * 结构体CvBoostType 穷举boosting 类型 * * 注: * 共有四种boosting变量,这些变量都支持两分类分类器,分别如下: * Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle AdaBoost. * L2 (两类分类器) and LK (K 类分类器)算法更接近LogitBoost,但是在数值上比 Gentle AdaBoost更稳定 * 对于回归来说,支持三种不同的损失函数,如下: * Least square, least absolute deviation and huber loss. */ typedef enum CvBoostType { CV_DABCLASS = 0, /* 2 class Discrete AdaBoost */ CV_RABCLASS = 1, /* 2 class Real AdaBoost */ CV_LBCLASS = 2, /* 2 class LogitBoost */ CV_GABCLASS = 3, /* 2 class Gentle AdaBoost */ CV_L2CLASS = 4, /* classification (2 class problem) */ CV_LKCLASS = 5, /* classification (K class problem) */ CV_LSREG = 6, /* least squares regression */ CV_LADREG = 7, /* least absolute deviation regression */ CV_MREG = 8 /* M-regression (Huber loss) */ } CvBoostType;
原文地址:http://blog.csdn.net/ding977921830/article/details/46774837