标签:
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 17088 | Accepted: 4998 | |
Case Time Limit: 5000MS |
Description
Input
Output
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
思路:先把前两列枚举两两组合产生N*N个数,然后在枚举后两列,然后二分求可以等于0的个数就好 复杂度是O(n*nlogn)
#include <iostream> #include <cstring> #include <cmath> #include <queue> #include <stack> #include <list> #include <map> #include <set> #include <sstream> #include <string> #include <vector> #include <cstdio> #include <ctime> #include <bitset> #include <algorithm> #define SZ(x) ((int)(x).size()) #define ALL(v) (v).begin(), (v).end() #define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i) #define refeach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i) #define REP(i,n) for ( int i=1; i<=int(n); i++ ) using namespace std; typedef long long ll; const int N = 4000+100; int a[5][N]; int all[N*N]; int half[N*N]; int main() { int n; while(~scanf("%d",&n)) { REP(i,n) REP(j,4) scanf("%d",&a[j][i]); int top = 0; ll ans = 0; REP(i,n) REP(j,n) half[++top] = a[1][i]+a[2][j]; REP(i,n) REP(j,n) all[top--] = a[3][i]+a[4][j]; sort(all+1,all+n*n+1); REP(i,n*n) ans += upper_bound(all+1,all+n*n+1,-half[i])-lower_bound(all+1,all+n*n+1,-half[i]); printf("%I64d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 2785 4 Values whose Sum is 0(折半枚举)
标签:
原文地址:http://blog.csdn.net/kalilili/article/details/46778727