码迷,mamicode.com
首页 > 其他好文 > 详细

贝克莱悖论:已死量的幽灵(微积分危机)

时间:2015-07-08 07:10:23      阅读:1232      评论:0      收藏:0      [点我收藏+]

标签:

十七世纪后期,英国数学家牛顿和德国数学家莱布尼茨分别独立创建了微积分学,成为解决众多问题的重要而有力的工具,并在实际应用中获得了巨大成功,然而,微积分学产生伊始,迎来的并非全是掌声,在当时它还遭到了许多人的强烈攻击和指责,原因在于当时的微积分主要建立在无穷小分析之上,而无穷小后来证明是包含逻辑矛盾的。

1734年,大主教乔治·贝克莱以“渺小的哲学家”之名出版了一本标题很长的书《分析学家:或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。

在这本书中,贝克莱对牛顿的理论进行了攻击。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

乔治·贝克莱,1685年3月12日出生于爱尔兰基尔肯尼郡,1753年1月14日卒于牛津。少年早熟,15岁考进都柏林三一学院,1704年获学士学位,1707年获硕士学位,留校担任讲师、初级研究员。1709年刊行《视觉新论》,1710年发表《人类知识原理》,1713年出版《海拉斯和斐洛诺斯的对话三篇》,均成为当时英国各大学热烈讨论的问题。1734年被任命为爱尔兰基尔肯尼地区主教,任职18年,仍致力于哲学的思辨。1752年移居牛津附近的新学院。

贝克莱悖论简介

数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为零”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0.但从形式逻辑而言,这无疑是一个矛盾。

对于无穷小量所带来的数学本身非逻辑非严谨性的问题,那些曾具体从事微积分研究的数学家们早就有过这样或那样的思考,在他们之间并展开过激烈的讨论和争论。从数学的角度看,如何较好地理解这一问题或许可以被看成一个纯技术性的问题;但是,从文化的角度看,我们又只有从更为广泛的角度去进行考察,特别是密切联系当时在欧洲人生活中占重要地位的基督教文化,才能更好地理解围绕无穷小运算所展开的激烈争论及其内涵。

贝克莱悖论的影响

伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱,也正是贝克莱悖论的“无穷小量究竟是否为零”的问题引起了第二次数学危机。

“无穷小量究竟是否为零”问题的解决

一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。

波尔查诺不仅承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。

在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε-δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。

十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。

同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。  

贝克莱悖论:已死量的幽灵(微积分危机)

标签:

原文地址:http://www.cnblogs.com/chenying99/p/4629065.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!