标签:算法
筛素数
void shai()
{
no[1]=true;no[0]=true;
for(int i=2;i<=r;i++)
{
if(!no[i])
p[++p[0]]=i;
int j=1,t=i*p[1];
while(j<=p[0] && t<=r)
{
no[t]=true;
if(i%p[j]==0) //每个数字都有最小质因子,这里往后的数都会被筛过的,break
break;
t=i*p[++j];
}
}
}
O(n)筛欧拉函数
void find()
{
phi[1]=1;
for(int i=2;i<=maxn-1;i++)
{
if(!is_prime[i]){prime[++cnt]=i,phi[i]=i-1;}
int j=1,t=2*i;
while(j<=cnt&&t<=maxn-1)
{
is_prime[t]=1;
if(i%prime[j]==0)
{ //欧拉函数公式是phi[i]=i*(1-1/p1)*(1-1/p2)..
phi[t]=phi[i]*prime[j];//质因子相同,只有i不同,且t=prime[j]*i,故作此
break;
}
else phi[t]=phi[i]*(prime[j]-1);//质因子不一样,因为欧拉函数是积性函数,就是
j++;t=prime[j]*i; //=phi[i]*phi[j]
}
}
}
sqrt(n)求单个欧拉函数
long long phi(long long x)
{
long long t=x,l=sqrt(x);
for(long long i=2;i<=l;i++)
if(x%i==0)
{
t=t/i*(i-1); //欧拉函数公式,一定是先除再加
while(x%i==0)
x/=i;
}
if(x>1) //对x大于sqrt(x)的质因子最多有1个
t=t/x*(x-1);
return t;
}
O(n)筛莫比乌斯函数
void shai()
{
no[1]=1;mu[1]=1;
for(int i=2;i<=maxl;i++)
{
if(!no[i])
p[++p[0]]=i,mu[i]=-1;//只有1个质因数,所以为-1
int j=1,t=p[1]*i;
while(j<=p[0] && t<=maxl)
{
no[t]=1;
if(i%p[j]==0)
{
mu[t]=0;//某质因数的指数不为1,根据定义=0
break;
}
mu[t]=-mu[i];//根据定义,当x=p1*p2*..*pk,mu[x]=(-1)^k,
t=p[++j]*i; //这里多一个质因数,自然就多乘一个-1
}
}
}
O(n)求1到n对mod的逆元
转自http://blog.csdn.net/whyorwhnt/article/details/19169035
inv[i] = ( MOD - MOD / i ) * inv[MOD%i] % MOD
证明:
设t = MOD / i , k = MOD % i
则有 t * i + k == 0 % MOD
有 -t * i == k % MOD
两边同时除以ik得到
-t * inv[k] == inv[i] % MOD
即
inv[i] == -MOD / i * inv[MOD%i]
即
inv[i] == ( MOD - MOD / i) * inv[MOD%i]
证毕
适用于MOD是质数的情况,能够O(n)时间求出1~n对模MOD的逆元
inv[1]=1;
for(long long i=2;i<maxl && i<mod;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
版权声明:本文为博主原创文章,未经博主允许不得转载。
O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求
标签:算法
原文地址:http://blog.csdn.net/liufengwei1/article/details/46800169