标签:
ProblemE: Matches |
We can make digits with matches as shown below:
Given N matches, find the number of different numbers representable using the matches. We shall only make numbers greater than or equal to 0, so no negative signs should be used. For instance, if you have 3 matches, then you can only make the numbers 1 or 7. If you have 4 matches, then you can make the numbers 1, 4, 7 or 11. Note that leading zeros are not allowed (e.g. 001, 042, etc. are illegal). Numbers such as 0, 20, 101 etc. are permitted, though.
Input contains no more than 100 lines. Each line contains one integer N (1 ≤ N ≤ 2000).
For each N, output the number of different (non-negative) numbers representable if you have N matches.
3 4
2 4
code:
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int MAXN = 2000 + 5; const int c[15] = {6,2,5,5,4,5,6,3,7,6}; class node { public: node() ///构造函数,将 a 清零,len赋初值为0 { memset(a, 0, sizeof(a)); len = 0; } node(int n) ///重载构造函数 { a[0] = n; len = 1; } node operator + (const node& b) ///重载 + 运算符,功能使两个类相加 { len = max(len, b.len); for(int i = 0; i < len; i++) { a[i] += b.a[i]; a[i + 1] += a[i] / 10; a[i] %= 10; } if(a[len]) len++; return *this; } void out() ///输出函数 { if(len == 0) printf("0"); else { for(int i = len - 1; i >= 0; i--) printf("%d", a[i]); } printf("\n"); } private: int a[500], len; } f[MAXN]; int main() { f[0] = node(1); for(int i = 0; i <= MAXN; i++) for(int j = 0; j < 10; j++) if(!(i == 0 && j == 0) && i + c[j] <= MAXN) ///i,j不能同时为0 f[i + c[j]] = f[i + c[j]] + f[i]; f[6] = f[6] + node(1); for(int i = 2; i <= MAXN; i++) f[i] = f[i] + f[i - 1]; int n; while(~scanf("%d", &n)) f[n].out(); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/houheshuai/article/details/46799119