标签:
Maximal Square
Given a 2D binary matrix filled with 0‘s and 1‘s, find the largest square containing all 1‘s and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
Return 4.
Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.
这题的DP思想部分借鉴了jianchao.li.fighter。
思路如下:构建二维数组len,len[i][j]表示以(i,j)为右下角的最大方块的边长。
递推关系为 len[i][j] = min(min(len[i-1][j], len[i][j-1]), len[i-1][j-1]) + 1;
如下图示意:
以(i,j)为右下角的最大方块边长,取决于周围三个位置(i-1,j),(i,j-1),(i-1,j-1),恰好为三者最小边长扩展1位。
若三者最小边长为0,那么(i,j)自成边长为1的方块。
class Solution { public: int maximalSquare(vector<vector<char>>& matrix) { if(matrix.empty() || matrix[0].empty()) return 0; int m = matrix.size(); int n = matrix[0].size(); int maxLen = 0; vector<vector<int> > len(m, vector<int>(n, 0)); // first row for(int i = 0; i < n; i ++) { len[0][i] = (int)(matrix[0][i]-‘0‘); if(len[0][i] == 1) maxLen = 1; } // first col for(int i = 0; i < m; i ++) { len[i][0] = (int)(matrix[i][0]-‘0‘); if(len[i][0] == 1) maxLen = 1; } for(int i = 1; i < m; i ++) { for(int j = 1; j < n; j ++) { if(matrix[i][j] == ‘0‘) len[i][j] = 0; else { len[i][j] = min(min(len[i-1][j], len[i][j-1]), len[i-1][j-1]) + 1; maxLen = max(len[i][j], maxLen); } } } return maxLen * maxLen; } };
标签:
原文地址:http://www.cnblogs.com/ganganloveu/p/4632497.html