码迷,mamicode.com
首页 > 其他好文 > 详细

Caffe中增加新的layer以及Caffe中triplet loss layer的实现

时间:2015-07-09 14:40:23      阅读:716      评论:0      收藏:0      [点我收藏+]

标签:caffe   triplet   loss   layer   实现   

关于Tripletloss的原理,目标函数和梯度推导在上一篇博客中已经讲过了,具体见:Tripletloss原理以及梯度推导,这篇博文主要是讲caffe下实现Tripletloss,编程菜鸟,如果有写的不优化的地方,欢迎指出。

尊重原创,转载请注明:http://blog.csdn.net/tangwei2014

1.如何在caffe中增加新的layer

新版的caffe中增加新的layer,变得轻松多了,概括说来,分四步:

1)在./src/caffe/proto/caffe.proto 中增加对应layer的paramter message;

2)在./include/caffe/***layers.hpp中增加该layer的类的声明,***表示有common_layers.hpp,data_layers.hpp, neuron_layers.hpp, vision_layers.hpp 和loss_layers.hpp等;

3)在./src/caffe/layers/目录下新建.cpp和.cu文件,进行类实现。

4)在./src/caffe/gtest/中增加layer的测试代码,对所写的layer前传和反传进行测试,测试还包括速度。

最后一步很多人省了,或者没意识到,但是为保证代码正确,建议还是严格进行测试,磨刀不误砍柴功。

2.caffe中实现Triplettloss layer

1.caffe.proto中增加Triplettloss layer的定义

首先在message LayerParameter中追加 optional TripletLossParameter Triplet_loss_param = 138; 其中138是我目前LayerParameter message中现有元素的个数,具体是多少,可以看LayerParameter message上面注释中的:

//LayerParameter next available layer-specific ID: 134 (last added:reshape_param)

然后增加Message:

message TripletLossParameter {
     // margin for dissimilar pair
    optional float margin = 1 [default = 1.0];
}

其中 margin就是定义Tripletloss原理以及梯度推导所讲的alpha。

2.在./include/caffe/loss_layers.hpp中增加Tripletloss layer的类的声明

具体解释见注释,主要的是定义了一些变量,用来在前传中存储中间计算结果,以便在反传的时候避免重复计算。

 /**
 * @brief Computes the Tripletloss
 */
template <typename Dtype>
class TripletLossLayer : publicLossLayer<Dtype> {
 public:
 explicit TripletLossLayer(const LayerParameter& param)
      : LossLayer<Dtype>(param){}
 virtual void LayerSetUp(const vector<Blob<Dtype>*>&bottom,
      constvector<Blob<Dtype>*>& top);
 
 virtual inline int ExactNumBottomBlobs() const { return 4; }
 virtual inline const char* type() const { return "TripletLoss";}
 /**
  * Unlike most loss layers, in the TripletLossLayer we can backpropagate
  * to the first three inputs.
  */
 virtual inline bool AllowForceBackward(const int bottom_index) const {
    return bottom_index != 3;
 }
 
 protected:
 virtual void Forward_cpu(const vector<Blob<Dtype>*>&bottom,
      constvector<Blob<Dtype>*>& top);
 virtual void Forward_gpu(const vector<Blob<Dtype>*>&bottom,
      constvector<Blob<Dtype>*>& top);
 
 virtual void Backward_cpu(const vector<Blob<Dtype>*>&top,
      const vector<bool>&propagate_down, const vector<Blob<Dtype>*>& bottom);
 virtual void Backward_gpu(const vector<Blob<Dtype>*>&top,
      const vector<bool>&propagate_down, const vector<Blob<Dtype>*>& bottom);
 
 Blob<Dtype> diff_ap_;  //cached for backward pass
 Blob<Dtype> diff_an_;  //cached for backward pass
 Blob<Dtype> diff_pn_;  //cached for backward pass
 
 Blob<Dtype> diff_sq_ap_;  //cached for backward pass
 Blob<Dtype> diff_sq_an_;  //tmp storage for gpu forward pass
 
 Blob<Dtype> dist_sq_ap_;  //cached for backward pass
 Blob<Dtype> dist_sq_an_;  //cached for backward pass
 
 Blob<Dtype> summer_vec_;  //tmp storage for gpu forward pass
 Blob<Dtype> dist_binary_; // tmp storage for gpu forward pass
};

3. 在./src/caffe/layers/目录下新建Triplet_loss_layer.cpp,实现类

主要实现三个功能:

LayerSetUp:主要是做一些CHECK工作,然后根据bottom和top对类中的数据成员初始化。

Forward_cpu:前传,计算loss

Backward_cpu:反传,计算梯度。

/*
 * Triplet_loss_layer.cpp
 *
 * Created on: Jun 2, 2015
 *     Author: tangwei
 */
 
#include <algorithm>
#include <vector>
 
#include "caffe/layer.hpp"
#include"caffe/loss_layers.hpp"
#include"caffe/util/io.hpp"
#include"caffe/util/math_functions.hpp"
 
namespace caffe {
 
template <typename Dtype>
void TripletLossLayer<Dtype>::LayerSetUp(
 const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>&top) {
 LossLayer<Dtype>::LayerSetUp(bottom, top);
 CHECK_EQ(bottom[0]->num(), bottom[1]->num());
 CHECK_EQ(bottom[1]->num(), bottom[2]->num());
 CHECK_EQ(bottom[0]->channels(), bottom[1]->channels());
 CHECK_EQ(bottom[1]->channels(), bottom[2]->channels());
 CHECK_EQ(bottom[0]->height(), 1);
 CHECK_EQ(bottom[0]->width(), 1);
 CHECK_EQ(bottom[1]->height(), 1);
 CHECK_EQ(bottom[1]->width(), 1);
 CHECK_EQ(bottom[2]->height(), 1);
 CHECK_EQ(bottom[2]->width(), 1);
 
 CHECK_EQ(bottom[3]->channels(),1);
 CHECK_EQ(bottom[3]->height(), 1);
 CHECK_EQ(bottom[3]->width(), 1);
 
 diff_ap_.Reshape(bottom[0]->num(), bottom[0]->channels(), 1, 1);
 diff_an_.Reshape(bottom[0]->num(), bottom[0]->channels(), 1, 1);
 diff_pn_.Reshape(bottom[0]->num(), bottom[0]->channels(), 1, 1);
 
 diff_sq_ap_.Reshape(bottom[0]->num(), bottom[0]->channels(), 1,1);
 diff_sq_an_.Reshape(bottom[0]->num(), bottom[0]->channels(), 1,1);
 dist_sq_ap_.Reshape(bottom[0]->num(), 1, 1, 1);
 dist_sq_an_.Reshape(bottom[0]->num(), 1, 1, 1);
 // vector of ones used to sum along channels
 summer_vec_.Reshape(bottom[0]->channels(), 1, 1, 1);
 for (int i = 0; i < bottom[0]->channels(); ++i)
          summer_vec_.mutable_cpu_data()[i] = Dtype(1);
 dist_binary_.Reshape(bottom[0]->num(), 1, 1, 1);
    for (int i = 0; i < bottom[0]->num();++i)
        dist_binary_.mutable_cpu_data()[i]= Dtype(1);
}
 
template <typename Dtype>
void TripletLossLayer<Dtype>::Forward_cpu(
    const vector<Blob<Dtype>*>&bottom,
    const vector<Blob<Dtype>*>&top) {
 int count = bottom[0]->count();
 const Dtype* sampleW = bottom[3]->cpu_data();
 caffe_sub(
      count,
      bottom[0]->cpu_data(),  // a
      bottom[1]->cpu_data(),  // p
      diff_ap_.mutable_cpu_data());  // a_i-p_i
 caffe_sub(
       count,
       bottom[0]->cpu_data(),  // a
       bottom[2]->cpu_data(),  // n
       diff_an_.mutable_cpu_data());  // a_i-n_i
 caffe_sub(
       count,
       bottom[1]->cpu_data(),  // p
       bottom[2]->cpu_data(),  // n
       diff_pn_.mutable_cpu_data());  // p_i-n_i
 const int channels = bottom[0]->channels();
 Dtype margin = this->layer_param_.triplet_loss_param().margin();
 
 Dtype loss(0.0);
 for (int i = 0; i < bottom[0]->num(); ++i) {
    dist_sq_ap_.mutable_cpu_data()[i] =caffe_cpu_dot(channels,
        diff_ap_.cpu_data() + (i*channels),diff_ap_.cpu_data() + (i*channels));
    dist_sq_an_.mutable_cpu_data()[i] =caffe_cpu_dot(channels,
        diff_an_.cpu_data() + (i*channels),diff_an_.cpu_data() + (i*channels));
    Dtype mdist = sampleW[i]*std::max(margin +dist_sq_ap_.cpu_data()[i] - dist_sq_an_.cpu_data()[i], Dtype(0.0));
    loss += mdist;
    if(mdist==Dtype(0)){
        //dist_binary_.mutable_cpu_data()[i]= Dtype(0);
        //preparefor backward pass
        caffe_set(channels,Dtype(0), diff_ap_.mutable_cpu_data() + (i*channels));
        caffe_set(channels,Dtype(0), diff_an_.mutable_cpu_data() + (i*channels));
        caffe_set(channels,Dtype(0), diff_pn_.mutable_cpu_data() + (i*channels));
    }
 }
 loss = loss / static_cast<Dtype>(bottom[0]->num()) / Dtype(2);
 top[0]->mutable_cpu_data()[0] = loss;
}
 
template <typename Dtype>
void TripletLossLayer<Dtype>::Backward_cpu(constvector<Blob<Dtype>*>& top,
    const vector<bool>&propagate_down, const vector<Blob<Dtype>*>& bottom) {
 //Dtype margin =this->layer_param_.triplet_loss_param().margin();
 const Dtype* sampleW = bottom[3]->cpu_data();
 for (int i = 0; i < 3; ++i) {
    if (propagate_down[i]) {
      const Dtype sign = (i < 2) ? -1 : 1;
      const Dtype alpha = sign *top[0]->cpu_diff()[0] /
         static_cast<Dtype>(bottom[i]->num());
      int num = bottom[i]->num();
      int channels = bottom[i]->channels();
      for (int j = 0; j < num; ++j) {
        Dtype* bout =bottom[i]->mutable_cpu_diff();
        if (i==0) {  // a
         //if(dist_binary_.cpu_data()[j]>Dtype(0)){
                         caffe_cpu_axpby(
                                 channels,
                                 alpha*sampleW[j],
                                 diff_pn_.cpu_data() + (j*channels),
                                 Dtype(0.0),
                                 bout + (j*channels));
          //}else{
          // caffe_set(channels, Dtype(0), bout + (j*channels));
          //}
        } else if (i==1) {  // p
         //if(dist_binary_.cpu_data()[j]>Dtype(0)){
                         caffe_cpu_axpby(
                                 channels,
                                 alpha*sampleW[j],
                                 diff_ap_.cpu_data() + (j*channels),
                                 Dtype(0.0),
                                 bout + (j*channels));
          //}else{
          //     caffe_set(channels, Dtype(0), bout +(j*channels));
          //}
               }else if (i==2) {  // n
                 //if(dist_binary_.cpu_data()[j]>Dtype(0)){
                         caffe_cpu_axpby(
                                 channels,
                                 alpha*sampleW[j],
                                 diff_an_.cpu_data() + (j*channels),
                                 Dtype(0.0),
                                 bout + (j*channels));
                  //}else{
                  //  caffe_set(channels, Dtype(0), bout + (j*channels));
                  //}
               }
      } // for num
    } //if propagate_down[i]
 } //for i
}
 
#ifdef CPU_ONLY
STUB_GPU(TripletLossLayer);
#endif
 
INSTANTIATE_CLASS(TripletLossLayer);
REGISTER_LAYER_CLASS(TripletLoss);
 
} // namespace caffe

4.在./src/caffe/layers/目录下新建Triplet_loss_layer.cu,实现GPU下的前传和反传

在GPU下实现前传和反传

/*
 * Triplet_loss_layer.cu
 *
 * Created on: Jun 2, 2015
 *     Author: tangwei
 */
 
#include<algorithm>
#include<vector>
 
#include"caffe/layer.hpp"
#include"caffe/util/io.hpp"
#include"caffe/util/math_functions.hpp"
#include"caffe/vision_layers.hpp"
 
namespace caffe {
 
template <typenameDtype>
void TripletLossLayer<Dtype>::Forward_gpu(
    const vector<Blob<Dtype>*>&bottom, const vector<Blob<Dtype>*>& top) {
  const int count = bottom[0]->count();
  caffe_gpu_sub(
      count,
      bottom[0]->gpu_data(),  // a
      bottom[1]->gpu_data(),  // p
      diff_ap_.mutable_gpu_data());  // a_i-p_i
  caffe_gpu_sub(
           count,
           bottom[0]->gpu_data(),  // a
           bottom[2]->gpu_data(),  // n
           diff_an_.mutable_gpu_data());  //a_i-n_i
  caffe_gpu_sub(
      count,
      bottom[1]->gpu_data(),  // p
      bottom[2]->gpu_data(),  // n
      diff_pn_.mutable_gpu_data());  // p_i-n_i
 
  caffe_gpu_powx(
      count,
      diff_ap_.mutable_gpu_data(),  // a_i-p_i
      Dtype(2),
      diff_sq_ap_.mutable_gpu_data());  // (a_i-p_i)^2
  caffe_gpu_gemv(
      CblasNoTrans,
      bottom[0]->num(),
      bottom[0]->channels(),
      Dtype(1.0),                                        //alpha
      diff_sq_ap_.gpu_data(),  // (a_i-p_i)^2                // A
      summer_vec_.gpu_data(),                             // x
      Dtype(0.0),                                        //belta
      dist_sq_ap_.mutable_gpu_data());  // \Sum (a_i-p_i)^2  //y
 
  caffe_gpu_powx(
        count,
        diff_an_.mutable_gpu_data(),  // a_i-n_i
        Dtype(2),
        diff_sq_an_.mutable_gpu_data());  // (a_i-n_i)^2
  caffe_gpu_gemv(
        CblasNoTrans,
        bottom[0]->num(),
        bottom[0]->channels(),
        Dtype(1.0),                                         //alpha
        diff_sq_an_.gpu_data(),  // (a_i-n_i)^2                // A
        summer_vec_.gpu_data(),                             // x
        Dtype(0.0),                                        //belta
        dist_sq_an_.mutable_gpu_data());  // \Sum (a_i-n_i)^2  //y
 
  Dtype margin = this->layer_param_.triplet_loss_param().margin();
  Dtype loss(0.0);
  const Dtype* sampleW =bottom[3]->cpu_data();
  for (int i = 0; i < bottom[0]->num();++i) {
     loss += sampleW[i]*std::max(margin+dist_sq_ap_.cpu_data()[i]- dist_sq_an_.cpu_data()[i], Dtype(0.0));
  }
  loss = loss /static_cast<Dtype>(bottom[0]->num()) / Dtype(2);
  top[0]->mutable_cpu_data()[0] = loss;
}
 
template <typenameDtype>
__global__ voidCLLBackward(const int count, const int channels,
    const Dtype margin, const Dtype alpha,const Dtype* sampleW,
    const Dtype* diff, const Dtype*dist_sq_ap_, const Dtype* dist_sq_an_,
    Dtype *bottom_diff) {
  CUDA_KERNEL_LOOP(i, count) {
    int n = i / channels;  // the num index, to access dist_sq_ap_ anddist_sq_an_
    Dtype mdist(0.0);
    mdist = margin +dist_sq_ap_[n] -dist_sq_an_[n];
    if (mdist > 0.0) {
                    bottom_diff[i] =alpha*sampleW[n]*diff[i];
          } else {
                    bottom_diff[i] = 0;
    }
  }
}
 
template <typenameDtype>
void TripletLossLayer<Dtype>::Backward_gpu(constvector<Blob<Dtype>*>& top,
    const vector<bool>&propagate_down, const vector<Blob<Dtype>*>& bottom) {
  Dtype margin = this->layer_param_.triplet_loss_param().margin();
  const int count = bottom[0]->count();
  const int channels =bottom[0]->channels();
 
  for (int i = 0; i < 3; ++i) {
    if (propagate_down[i]) {
      const Dtype sign = (i < 2) ? -1 : 1;
      const Dtype alpha = sign *top[0]->cpu_diff()[0] /
         static_cast<Dtype>(bottom[0]->num());
      if(i==0){
                      // NOLINT_NEXT_LINE(whitespace/operators)
                     CLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count),CAFFE_CUDA_NUM_THREADS>>>(
                                 count, channels, margin, alpha,
                                 bottom[3]->gpu_data(),
                                 diff_pn_.gpu_data(),  // the cached eltwise difference between pand n
                                 dist_sq_ap_.gpu_data(),  // the cached square distance between a and p
                                 dist_sq_an_.gpu_data(),  // the cached square distance between a and n
                                 bottom[i]->mutable_gpu_diff());
                      CUDA_POST_KERNEL_CHECK;
      }else if(i==1){
            // NOLINT_NEXT_LINE(whitespace/operators)
                     CLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count),CAFFE_CUDA_NUM_THREADS>>>(
                                 count, channels, margin, alpha,
                                 bottom[3]->gpu_data(),
                                 diff_ap_.gpu_data(),  // the cached eltwise difference between aand p
                                 dist_sq_ap_.gpu_data(),  // the cached square distance between a and p
                                 dist_sq_an_.gpu_data(),  // the cached square distance between a and n
                                 bottom[i]->mutable_gpu_diff());
                      CUDA_POST_KERNEL_CHECK;
      }else if(i==2){
            // NOLINT_NEXT_LINE(whitespace/operators)
                     CLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count),CAFFE_CUDA_NUM_THREADS>>>(
                                 count, channels, margin, alpha,
                                 bottom[3]->gpu_data(),
                                 diff_an_.gpu_data(),  // the cached eltwise difference between aand n
                                 dist_sq_ap_.gpu_data(),  // the cached square distance between a and p
                                 dist_sq_an_.gpu_data(),  // the cached square distance between a and n
                                 bottom[i]->mutable_gpu_diff());
                      CUDA_POST_KERNEL_CHECK;
 
      }
    }
  }
}
 
INSTANTIATE_LAYER_GPU_FUNCS(TripletLossLayer);
 
}  // namespace caffe

5. 在./src/caffe/test/目录下增加test_Triplet_loss_layer.cpp

/*
 * test_triplet_loss_layer.cpp
 *
 * Created on: Jun 3, 2015
 *     Author: tangwei
 */
 
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<vector>
 
#include"gtest/gtest.h"
 
#include"caffe/blob.hpp"
#include"caffe/common.hpp"
#include"caffe/filler.hpp"
#include"caffe/vision_layers.hpp"
 
#include "caffe/test/test_caffe_main.hpp"
#include"caffe/test/test_gradient_check_util.hpp"
 
namespace caffe {
 
template <typenameTypeParam>
class TripletLossLayerTest: public MultiDeviceTest<TypeParam> {
  typedef typename TypeParam::Dtype Dtype;
 
 protected:
  TripletLossLayerTest()
      : blob_bottom_data_i_(newBlob<Dtype>(512, 2, 1, 1)),
        blob_bottom_data_j_(newBlob<Dtype>(512, 2, 1, 1)),
        blob_bottom_data_k_(newBlob<Dtype>(512, 2, 1, 1)),
        blob_bottom_y_(newBlob<Dtype>(512, 1, 1, 1)),
        blob_top_loss_(new Blob<Dtype>()){
    // fill the values
    FillerParameter filler_param;
    filler_param.set_min(-1.0);
    filler_param.set_max(1.0);  // distances~=1.0 to test both sides ofmargin
    UniformFiller<Dtype>filler(filler_param);
    filler.Fill(this->blob_bottom_data_i_);
   blob_bottom_vec_.push_back(blob_bottom_data_i_);
    filler.Fill(this->blob_bottom_data_j_);
   blob_bottom_vec_.push_back(blob_bottom_data_j_);
    filler.Fill(this->blob_bottom_data_k_);
    blob_bottom_vec_.push_back(blob_bottom_data_k_);
    for (int i = 0; i <blob_bottom_y_->count(); ++i) {
       blob_bottom_y_->mutable_cpu_data()[i] = caffe_rng_rand() % 2;  // 0 or 1
    }
    blob_bottom_vec_.push_back(blob_bottom_y_);
    blob_top_vec_.push_back(blob_top_loss_);
  }
  virtual ~TripletLossLayerTest() {
    delete blob_bottom_data_i_;
    delete blob_bottom_data_j_;
    delete blob_bottom_data_k_;
    delete blob_top_loss_;
  }
 
  Blob<Dtype>* const blob_bottom_data_i_;
  Blob<Dtype>* const blob_bottom_data_j_;
  Blob<Dtype>* const blob_bottom_data_k_;
  Blob<Dtype>* const blob_bottom_y_;
  Blob<Dtype>* const blob_top_loss_;
  vector<Blob<Dtype>*>blob_bottom_vec_;
  vector<Blob<Dtype>*>blob_top_vec_;
};
 
TYPED_TEST_CASE(TripletLossLayerTest,TestDtypesAndDevices);
 
TYPED_TEST(TripletLossLayerTest,TestForward) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter layer_param;
  TripletLossLayer<Dtype>layer(layer_param);
  layer.SetUp(this->blob_bottom_vec_,this->blob_top_vec_);
  layer.Forward(this->blob_bottom_vec_,this->blob_top_vec_);
  // manually compute to compare
  const Dtype margin = layer_param.triplet_loss_param().margin();
  const int num =this->blob_bottom_data_i_->num();
  const int channels =this->blob_bottom_data_i_->channels();
  Dtype loss(0);
  for (int i = 0; i < num; ++i) {
    Dtype dist_sq_ij(0);
    Dtype dist_sq_ik(0);
    for (int j = 0; j < channels; ++j) {
      Dtype diff_ij =this->blob_bottom_data_i_->cpu_data()[i*channels+j] -
          this->blob_bottom_data_j_->cpu_data()[i*channels+j];
      dist_sq_ij += diff_ij*diff_ij;
      Dtype diff_ik =this->blob_bottom_data_i_->cpu_data()[i*channels+j] -
         this->blob_bottom_data_k_->cpu_data()[i*channels+j];
      dist_sq_ik += diff_ik*diff_ik;
    }
    loss += std::max(Dtype(0.0),margin+dist_sq_ij-dist_sq_ik);
  }
  loss /= static_cast<Dtype>(num) *Dtype(2);
 EXPECT_NEAR(this->blob_top_loss_->cpu_data()[0], loss, 1e-6);
}
 
TYPED_TEST(TripletLossLayerTest,TestGradient) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter layer_param;
  TripletLossLayer<Dtype>layer(layer_param);
  layer.SetUp(this->blob_bottom_vec_,this->blob_top_vec_);
  GradientChecker<Dtype> checker(1e-2,1e-2, 1701);
  // check the gradient for the first twobottom layers
  checker.CheckGradientExhaustive(&layer,this->blob_bottom_vec_,
      this->blob_top_vec_, 0);
  checker.CheckGradientExhaustive(&layer,this->blob_bottom_vec_,
      this->blob_top_vec_, 1);
}
 
}  // namespace caffe

3.编译测试

重新 make all 如果出错,检查代码语法错误。

make test

make runtest 如果成功,全是绿色的OK  否则会给出红色提示,就得看看是不是实现逻辑上出错了。









版权声明:本文为博主原创文章,未经博主允许不得转载。

Caffe中增加新的layer以及Caffe中triplet loss layer的实现

标签:caffe   triplet   loss   layer   实现   

原文地址:http://blog.csdn.net/tangwei2014/article/details/46815231

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!