码迷,mamicode.com
首页 > 其他好文 > 详细

学习STL -- 向量vector

时间:2015-07-09 18:08:57      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:

在STL中向量vector是使用数组的形式实现的,因此向量具有顺序表的所有特点,可以快速随机存取任意元素。向量是同一种数据类型的对象的集合,每个对象根据其位置有一个整数索引值与其对应,类似于数组。与定义数组不同,向量在实例化是不需要声明长度,标准库负责管理和储存元素相关的内存,不用担心长度不够。

vector容器中的元素是连续存放的,当容器中增加一个新元素的时候,如果原来的存储空间刚好被用完,那么系统需要重新申请一块更大的连续存储空间,把原来的元素复制到新的空间,并在最后添加新元素,最后再撤销久空间。若每次增加新元素都要重复以上步骤,则会降低性能。实际上vector容器每次在申请内存的时候,都会额外申请一块连续的存储区,用于存放将来新加入的元素,从而不必每次都为新元素重新分配一次容器。当所有空间都被占满时,再重新申请一块新的空间。所分配的额外内存容量因库的不同而不同,这种分配策略使得vector容器具有显著的增长效率,提高了性能。

(1) 容器定义的类型别名

public:
      typedef _Tp                                        value_type;
      typedef typename _Tp_alloc_type::pointer           pointer;
      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
      typedef typename _Tp_alloc_type::reference         reference;
      typedef typename _Tp_alloc_type::const_reference   const_reference;
      typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
      const_iterator;
      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
      typedef std::reverse_iterator<iterator>            reverse_iterator;
      typedef size_t                                     size_type;
      typedef ptrdiff_t                                  difference_type;
          typedef _Alloc                                     allocator_type;
value_type:   元素类型

reference:    元素的左值类型,等效与value_type&

const_reference:  元素的常量左值类型

iterator:     vector类型的迭代器类型

const_iterator:   元素的只读迭代器类型

const_reverse_iterator:  元素的只读逆序迭代器

reverse_iterator: 按逆序寻址元素的迭代器

size_type:    无符号整形

difference_type:  足够存储两个迭代器差值的有符号整形

(2) begin 和 end 成员

/**
       *  Returns a read/write iterator that points to the first
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      begin()
      { return iterator (this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) iterator that points to the
       *  first element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      const_iterator
      begin() const
      { return const_iterator (this->_M_impl._M_start); }

 /**
       *  Returns a read/write iterator that points one past the last
       *  element in the %vector.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      end()
      { return iterator (this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %vector.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      end() const
      { return const_iterator (this->_M_impl._M_finish); }

 /**
       *  Returns a read/write reverse iterator that points to the
       *  last element in the %vector.  Iteration is done in reverse
       *  element order.
       */
      reverse_iterator
      rbegin()
      { return reverse_iterator(end()); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %vector.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      rbegin() const
      { return const_reverse_iterator(end()); }

 /**
       *  Returns a read/write reverse iterator that points to one
       *  before the first element in the %vector.  Iteration is done
       *  in reverse element order.
       */
      reverse_iterator
      rend()
      { return reverse_iterator(begin()); }

 /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %vector.  Iteration
       *  is done in reverse element order.
       */
      const_reverse_iterator
      rend() const
      { return const_reverse_iterator(begin()); }

(3) 增删元素

/**
       *  @brief  Add data to the end of the %vector.
       *  @param  x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the end of the %vector and assigns the given data
       *  to it.  Due to the nature of a %vector this operation can be
       *  done in constant time if the %vector has preallocated space
       *  available.
       */
void
      push_back(const value_type& __x)
      {
        if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
          {
            this->_M_impl.construct(this->_M_impl._M_finish, __x);
            ++this->_M_impl._M_finish;
          }
        else
          _M_insert_aux(end(), __x);
      }

 /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation. It shrinks the %vector by one.
       *
       *  Note that no data is returned, and if the last element's
       *  data is needed, it should be retrieved before pop_back() is
       *  called.
       */
void
      pop_back()
      {
        --this->_M_impl._M_finish;
        this->_M_impl.destroy(this->_M_impl._M_finish);
      }

 /**
       *  @brief  Inserts given value into %vector before specified iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before
       *  the specified location.  Note that this kind of operation
       *  could be expensive for a %vector and if it is frequently
       *  used the user should consider using std::list.
       */
iterator
      insert(iterator __position, const value_type& __x);

 /**
       *  @brief  Inserts a number of copies of given data into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  n  Number of elements to be inserted.
       *  @param  x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of
       *  the given data before the location specified by @a position.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
void
      insert(iterator __position, size_type __n, const value_type& __x)
      { _M_fill_insert(__position, __n, __x); }

 /**
       *  @brief  Inserts a range into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function will insert copies of the data in the range
       *  [first,last) into the %vector before the location specified
       *  by @a pos.
       *
       *  Note that this kind of operation could be expensive for a
       *  %vector and if it is frequently used the user should
       *  consider using std::list.
       */
template<typename _InputIterator>
        void
        insert(iterator __position, _InputIterator __first,
               _InputIterator __last)
        {
          // Check whether it's an integral type.  If so, it's not an iterator.
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
          _M_insert_dispatch(__position, __first, __last, _Integral());
        }

 /**
       *  @brief  Remove element at given position.
       *  @param  position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position and thus
       *  shorten the %vector by one.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the element, and that if the element is itself a pointer,
       *  the pointed-to memory is not touched in any way.  Managing
       *  the pointer is the user's responsibilty.
       */
iterator
      erase(iterator __position);

 /**
       *  @brief  Remove a range of elements.
       *  @param  first  Iterator pointing to the first element to be erased.
       *  @param  last  Iterator pointing to one past the last element to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range [first,last) and
       *  shorten the %vector accordingly.
       *
       *  Note This operation could be expensive and if it is
       *  frequently used the user should consider using std::list.
       *  The user is also cautioned that this function only erases
       *  the elements, and that if the elements themselves are
       *  pointers, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibilty.
       */
iterator
      erase(iterator __first, iterator __last);

 /**
       *  Erases all the elements.  Note that this function only erases the
       *  elements, and that if the elements themselves are pointers, the
       *  pointed-to memory is not touched in any way.  Managing the pointer is
       *  the user's responsibilty.
       */
      void
      clear()
      {
        std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
                      _M_get_Tp_allocator());
        this->_M_impl._M_finish = this->_M_impl._M_start;
      }


(4) 赋值与交换

/**
       *  @brief  %Vector assignment operator.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  All the elements of @a x are copied, but any extra memory in
       *  @a x (for fast expansion) will not be copied.  Unlike the
       *  copy constructor, the allocator object is not copied.
       */
      vector&
      operator=(const vector& __x);

 /**
       *  @brief  Assigns a given value to a %vector.
       *  @param  n  Number of elements to be assigned.
       *  @param  val  Value to be assigned.
       *
       *  This function fills a %vector with @a n copies of the given
       *  value.  Note that the assignment completely changes the
       *  %vector and that the resulting %vector's size is the same as
       *  the number of elements assigned.  Old data may be lost.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }

 /**
       *  @brief  Assigns a range to a %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function fills a %vector with copies of the elements in the
       *  range [first,last).
       *
       *  Note that the assignment completely changes the %vector and
       *  that the resulting %vector's size is the same as the number
       *  of elements assigned.  Old data may be lost.
       */
template<typename _InputIterator>
        void
        assign(_InputIterator __first, _InputIterator __last)
        {
          // Check whether it's an integral type.  If so, it's not an iterator.
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
          _M_assign_dispatch(__first, __last, _Integral());
        }

 /**
       *  @brief  Swaps data with another %vector.
       *  @param  x  A %vector of the same element and allocator types.
       *
       *  This exchanges the elements between two vectors in constant time.
       *  (Three pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(v1,v2) will feed to this function.
       */
      void
      swap(vector& __x)
      {
        std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
        std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
        std::swap(this->_M_impl._M_end_of_storage,
                  __x._M_impl._M_end_of_storage);
      }

(5) 容器大小的操作

/**  Returns the number of elements in the %vector.  */
      size_type
      size() const
      { return size_type(end() - begin()); }

 /**  Returns the size() of the largest possible %vector.  */
      size_type
      max_size() const
      { return size_type(-1) / sizeof(value_type); }

 /**
       *  @brief  Resizes the %vector to the specified number of elements.
       *  @param  new_size  Number of elements the %vector should contain.
       *  @param  x  Data with which new elements should be populated.
       *
       *  This function will %resize the %vector to the specified
       *  number of elements.  If the number is smaller than the
       *  %vector's current size the %vector is truncated, otherwise
       *  the %vector is extended and new elements are populated with
       *  given data.
       */
      void
      resize(size_type __new_size, value_type __x = value_type())
      {
        if (__new_size < size())
          erase(begin() + __new_size, end());
        else
          insert(end(), __new_size - size(), __x);
      }

 /**
       *  Returns the total number of elements that the %vector can
       *  hold before needing to allocate more memory.
       */
      size_type
      capacity() const
      { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
                         - begin()); }

      /**
       *  Returns true if the %vector is empty.  (Thus begin() would
       *  equal end().)
       */
      bool
      empty() const
      { return begin() == end();

 /**
       *  @brief  Attempt to preallocate enough memory for specified number of
       *          elements.
       *  @param  n  Number of elements required.
       *  @throw  std::length_error  If @a n exceeds @c max_size().
       *
       *  This function attempts to reserve enough memory for the
       *  %vector to hold the specified number of elements.  If the
       *  number requested is more than max_size(), length_error is
       *  thrown.
       *
       *  The advantage of this function is that if optimal code is a
       *  necessity and the user can determine the number of elements
       *  that will be required, the user can reserve the memory in
       *  %advance, and thus prevent a possible reallocation of memory
       *  and copying of %vector data.
       */
void
      reserve(size_type __n);

(6) 访问元素

/**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      reference
      operator[](size_type __n)
      { return *(begin() + __n); }	

/**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      const_reference
      operator[](size_type __n) const
      { return *(begin() + __n); }

 /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      reference
      at(size_type __n)
      {
        _M_range_check(__n);
        return (*this)[__n];
      }

 /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the vector.  The
       *  function throws out_of_range if the check fails.
       */
      const_reference
      at(size_type __n) const
      {
        _M_range_check(__n);
        return (*this)[__n];
      }

 /**
       *  Returns a read/write reference to the data at the first
       *  element of the %vector.
       */
      reference
      front()
      { return *begin(); }

 /**
       *  Returns a read-only (constant) reference to the data at the first
       *  element of the %vector.
       */
      const_reference
      front() const
      { return *begin(); }

 /**
       *  Returns a read/write reference to the data at the last
       *  element of the %vector.
       */
      reference
      back()
      { return *(end() - 1); }

 /**
       *  Returns a read-only (constant) reference to the data at the
       *  last element of the %vector.
       */
      const_reference
      back() const
      { return *(end() - 1); }

(7) 关系操作符

/**
   *  @brief  Vector equality comparison.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff the size and elements of the vectors are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  vectors.  Vectors are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return (__x.size() == __y.size()
              && std::equal(__x.begin(), __x.end(), __y.begin())); }

 /**
   *  @brief  Vector ordering relation.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff @a x is lexicographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  vectors.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return std::lexicographical_compare(__x.begin(), __x.end(),
                                          __y.begin(), __y.end()); }

 /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return __y < __x; }

 /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
    { return !(__x < __y); }

(8) 构造函数

/**
       *  @brief  Default constructor creates no elements.
       */
      explicit
      vector(const allocator_type& __a = allocator_type())
      : _Base(__a)
      { }

 /**
       *  @brief  Create a %vector with copies of an exemplar element.
       *  @param  n  The number of elements to initially create.
       *  @param  value  An element to copy.
       *
       *  This constructor fills the %vector with @a n copies of @a value.
       */
explicit
      vector(size_type __n, const value_type& __value = value_type(),
             const allocator_type& __a = allocator_type())
      : _Base(__n, __a)
      {
        std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
                                      _M_get_Tp_allocator());
        this->_M_impl._M_finish = this->_M_impl._M_start + __n;
      }

 /**
       *  @brief  %Vector copy constructor.
       *  @param  x  A %vector of identical element and allocator types.
       *
       *  The newly-created %vector uses a copy of the allocation
       *  object used by @a x.  All the elements of @a x are copied,
       *  but any extra memory in
       *  @a x (for fast expansion) will not be copied.
       */
      vector(const vector& __x)
      : _Base(__x.size(), __x.get_allocator())
      { this->_M_impl._M_finish =
          std::__uninitialized_copy_a(__x.begin(), __x.end(),
                                      this->_M_impl._M_start,
                                      _M_get_Tp_allocator());
      }

 /**
       *  @brief  Builds a %vector from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       *
       *  Create a %vector consisting of copies of the elements from
       *  [first,last).
       *
       *  If the iterators are forward, bidirectional, or
       *  random-access, then this will call the elements' copy
       *  constructor N times (where N is distance(first,last)) and do
       *  no memory reallocation.  But if only input iterators are
       *  used, then this will do at most 2N calls to the copy
       *  constructor, and logN memory reallocations.
       */
template<typename _InputIterator>
        vector(_InputIterator __first, _InputIterator __last,
               const allocator_type& __a = allocator_type())
        : _Base(__a)
        {
          // Check whether it's an integral type.  If so, it's not an iterator.
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
          _M_initialize_dispatch(__first, __last, _Integral());
        }

定义vector对象时必须说明其保存的对象类型。以下是定义向量对象的一些例子:

vector <int> ivec;              //定义向量对象ivec
vector <int> ivec1(ivec);     //定义向量对象ivec2,并用ivec初始化
vector <int> ivec2(n,i);   //定义向量对象ivec2,包含了n个值为i的元素
vector <int> ivec3(n);       //定义向量对象ivec3,包含了n个值为0的元素
vector<vector <int> > vivec; //定义向量对象vivec,这是一个容器的容器。注意两个“>”之间要有空格



版权声明:本文为博主原创文章,未经博主允许不得转载。

学习STL -- 向量vector

标签:

原文地址:http://blog.csdn.net/liuruiqun/article/details/46818367

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!