标签:
假设检验的标准步骤:
1、建立假设:根据问题的需要提出原假设H0,以及其对立面备择假设H1。
2、确立检验水准:即设立小概率事件的界值α。
3、进行试验:得到用于统计分析的样本,以该试验的结果作为假设检验的根据。
4、选定检验方法,计算检验统计量。
5、确定P值。
原假设也称为零假设,备择假设也称为对立假设。对立假设就是对立于原假设,备择假设的意思是,一旦你决定不采纳原假设,则这假设可备你选择。
根据统计学观点,接受原假设和否定原假设,二者的意义并非对等。接受原假设只是意味着,按所获数据来看,并无足够的根据认为原假设不对,而不是说,从所获数据证明了原假设是对的,因此,问题多少仍处于未决的局面。反之,否定原假设则意味着,按所获数据有充足理由(而非绝对地证明,因为数据有随机性)认为原假设不对,即有充足理由认为对立假设成立。故在一定限度内,可以说问题由了一个明确的结论。
假设检验的基本思想是统计学的“小概率反证法”原理:对于一个小概率事件而言,其对立面发生的可能性显然要大大高于这一小概率事件,可以认为小概率事件在一次试验中不应当发生。
假设检验除了分为单/双侧检验外,还可以分为参数检验和非参数检验。参数检验是已知数据的分布形式,只是不了解相应参数时的检验形式。如果数据的分布形式不了解,就必须使用非参数检验确定数据的分布形式。下面将介绍几种常用分布的假设检验。
一、正态分布的检验
正太分布的考察方法有:通过计算偏度系数和峰度系数加以考察;通过绘制直方图、PP图等图形工具来考察;也可以进行各种假设检验。最常用的就是K-S单样本检验。
K-S检验通过对两个分布之间的差异的分析,判断样本的观察结果是否来自制定分布的总体。计算P值的公式比较复杂,可不必深究。
分析者可以直接使用K-S检验对样本数据进行正态分布的检验,但值得推荐的第一步是对样本数据进行图形描述,图形可以给分析者一个直观的印象:该数据可能服从什么样的分布类型。
参考资料:
1. 张文彤. 《SPSS统计分析基础教程》
2. 陈希孺. 《统计学漫话》
标签:
原文地址:http://www.cnblogs.com/NaughtyBaby/p/4634175.html