标签:cvboost.cpp opencv源码分析 adaboost
我使用的是opencv2.4.9,安装后,我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvboost.cpp,研究源码那么多天,有很多收获,opencv库真是非常强大。具体内容如下:
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef HAVE_CVCONFIG_H #include "cvconfig.h" #endif #ifdef HAVE_MALLOC_H #include <malloc.h> #endif #ifdef HAVE_MEMORY_H #include <memory.h> #endif #ifdef _OPENMP #include <omp.h> #endif /* _OPENMP */ #include <cstdio> #include <cfloat> #include <cmath> #include <ctime> #include <climits> #include "_cvcommon.h" #include "cvclassifier.h" #ifdef _OPENMP #include "omp.h" #endif #define CV_BOOST_IMPL typedef struct CvValArray { uchar* data; size_t step; } CvValArray; #define CMP_VALUES( idx1, idx2 ) ( *( (float*) (aux->data + ((int) (idx1)) * aux->step ) ) < *( (float*) (aux->data + ((int) (idx2)) * aux->step ) ) ) static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_16s, short, CMP_VALUES, CvValArray* ) static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32s, int, CMP_VALUES, CvValArray* ) static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32f, float, CMP_VALUES, CvValArray* ) CV_BOOST_IMPL void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols ) { int idxtype = 0; size_t istep = 0; size_t jstep = 0; int i = 0; int j = 0; CvValArray va; CV_Assert( idx != NULL ); CV_Assert( val != NULL ); idxtype = CV_MAT_TYPE( idx->type ); CV_Assert( idxtype == CV_16SC1 || idxtype == CV_32SC1 || idxtype == CV_32FC1 ); CV_Assert( CV_MAT_TYPE( val->type ) == CV_32FC1 ); if( sortcols ) { CV_Assert( idx->rows == val->cols ); CV_Assert( idx->cols == val->rows ); istep = CV_ELEM_SIZE( val->type ); jstep = val->step; } else { CV_Assert( idx->rows == val->rows ); CV_Assert( idx->cols == val->cols ); istep = val->step; jstep = CV_ELEM_SIZE( val->type ); } va.data = val->data.ptr; va.step = jstep; switch( idxtype ) { case CV_16SC1: for( i = 0; i < idx->rows; i++ ) { for( j = 0; j < idx->cols; j++ ) { CV_MAT_ELEM( *idx, short, i, j ) = (short) j; } icvSortIndexedValArray_16s( (short*) (idx->data.ptr + (size_t)i * idx->step), idx->cols, &va ); va.data += istep; } break; case CV_32SC1: for( i = 0; i < idx->rows; i++ ) { for( j = 0; j < idx->cols; j++ ) { CV_MAT_ELEM( *idx, int, i, j ) = j; } icvSortIndexedValArray_32s( (int*) (idx->data.ptr + (size_t)i * idx->step), idx->cols, &va ); va.data += istep; } break; case CV_32FC1: for( i = 0; i < idx->rows; i++ ) { for( j = 0; j < idx->cols; j++ ) { CV_MAT_ELEM( *idx, float, i, j ) = (float) j; } icvSortIndexedValArray_32f( (float*) (idx->data.ptr + (size_t)i * idx->step), idx->cols, &va ); va.data += istep; } break; default: assert( 0 ); break; } } CV_BOOST_IMPL void cvReleaseStumpClassifier( CvClassifier** classifier ) { cvFree( classifier ); *classifier = 0; } CV_BOOST_IMPL float cvEvalStumpClassifier( CvClassifier* classifier, CvMat* sample ) { assert( classifier != NULL ); assert( sample != NULL ); assert( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); if( (CV_MAT_ELEM( (*sample), float, 0, ((CvStumpClassifier*) classifier)->compidx )) < ((CvStumpClassifier*) classifier)->threshold ) return ((CvStumpClassifier*) classifier)->left; return ((CvStumpClassifier*) classifier)->right; } #define ICV_DEF_FIND_STUMP_THRESHOLD( suffix, type, error ) static int icvFindStumpThreshold_##suffix( uchar* data, size_t datastep, uchar* wdata, size_t wstep, uchar* ydata, size_t ystep, uchar* idxdata, size_t idxstep, int num, float* lerror, float* rerror, float* threshold, float* left, float* right, float* sumw, float* sumwy, float* sumwyy ) { int found = 0; float wyl = 0.0F; float wl = 0.0F; float wyyl = 0.0F; float wyr = 0.0F; float wr = 0.0F; float curleft = 0.0F; float curright = 0.0F; float* prevval = NULL; float* curval = NULL; float curlerror = 0.0F; float currerror = 0.0F; int i = 0; int idx = 0; if( *sumw == FLT_MAX ) { /* calculate sums */ float *y = NULL; float *w = NULL; float wy = 0.0F; *sumw = 0.0F; *sumwy = 0.0F; *sumwyy = 0.0F; for( i = 0; i < num; i++ ) { idx = (int) ( *((type*) (idxdata + i*idxstep)) ); w = (float*) (wdata + idx * wstep); *sumw += *w; y = (float*) (ydata + idx * ystep); wy = (*w) * (*y); *sumwy += wy; *sumwyy += wy * (*y); } } for( i = 0; i < num; i++ ) { idx = (int) ( *((type*) (idxdata + i*idxstep)) ); curval = (float*) (data + idx * datastep); /* for debug purpose */ if( i > 0 ) assert( (*prevval) <= (*curval) ); wyr = *sumwy - wyl; wr = *sumw - wl; if( wl > 0.0 ) curleft = wyl / wl; else curleft = 0.0F; if( wr > 0.0 ) curright = wyr / wr; else curright = 0.0F; error if( curlerror + currerror < (*lerror) + (*rerror) ) { (*lerror) = curlerror; (*rerror) = currerror; *threshold = *curval; if( i > 0 ) { *threshold = 0.5F * (*threshold + *prevval); } *left = curleft; *right = curright; found = 1; } do { wl += *((float*) (wdata + idx * wstep)); wyl += (*((float*) (wdata + idx * wstep))) * (*((float*) (ydata + idx * ystep))); wyyl += *((float*) (wdata + idx * wstep)) * (*((float*) (ydata + idx * ystep))) * (*((float*) (ydata + idx * ystep))); } while( (++i) < num && ( *((float*) (data + (idx = (int) ( *((type*) (idxdata + i*idxstep))) ) * datastep)) == *curval ) ); --i; prevval = curval; } /* for each value */ return found; } /* misclassification error * err = MIN( wpos, wneg ); */ #define ICV_DEF_FIND_STUMP_THRESHOLD_MISC( suffix, type ) ICV_DEF_FIND_STUMP_THRESHOLD( misc_##suffix, type, float wposl = 0.5F * ( wl + wyl ); float wposr = 0.5F * ( wr + wyr ); curleft = 0.5F * ( 1.0F + curleft ); curright = 0.5F * ( 1.0F + curright ); curlerror = MIN( wposl, wl - wposl ); currerror = MIN( wposr, wr - wposr ); ) /* gini error * err = 2 * wpos * wneg /(wpos + wneg) */ #define ICV_DEF_FIND_STUMP_THRESHOLD_GINI( suffix, type ) ICV_DEF_FIND_STUMP_THRESHOLD( gini_##suffix, type, float wposl = 0.5F * ( wl + wyl ); float wposr = 0.5F * ( wr + wyr ); curleft = 0.5F * ( 1.0F + curleft ); curright = 0.5F * ( 1.0F + curright ); curlerror = 2.0F * wposl * ( 1.0F - curleft ); currerror = 2.0F * wposr * ( 1.0F - curright ); ) #define CV_ENTROPY_THRESHOLD FLT_MIN /* entropy error * err = - wpos * log(wpos / (wpos + wneg)) - wneg * log(wneg / (wpos + wneg)) */ #define ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( suffix, type ) ICV_DEF_FIND_STUMP_THRESHOLD( entropy_##suffix, type, float wposl = 0.5F * ( wl + wyl ); float wposr = 0.5F * ( wr + wyr ); curleft = 0.5F * ( 1.0F + curleft ); curright = 0.5F * ( 1.0F + curright ); curlerror = currerror = 0.0F; if( curleft > CV_ENTROPY_THRESHOLD ) curlerror -= wposl * logf( curleft ); if( curleft < 1.0F - CV_ENTROPY_THRESHOLD ) curlerror -= (wl - wposl) * logf( 1.0F - curleft ); if( curright > CV_ENTROPY_THRESHOLD ) currerror -= wposr * logf( curright ); if( curright < 1.0F - CV_ENTROPY_THRESHOLD ) currerror -= (wr - wposr) * logf( 1.0F - curright ); ) /* least sum of squares error */ #define ICV_DEF_FIND_STUMP_THRESHOLD_SQ( suffix, type ) ICV_DEF_FIND_STUMP_THRESHOLD( sq_##suffix, type, /* calculate error (sum of squares) */ /* err = sum( w * (y - left(rigt)Val)^2 ) */ curlerror = wyyl + curleft * curleft * wl - 2.0F * curleft * wyl; currerror = (*sumwyy) - wyyl + curright * curright * wr - 2.0F * curright * wyr; ) ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 16s, short ) ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32s, int ) ICV_DEF_FIND_STUMP_THRESHOLD_MISC( 32f, float ) ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 16s, short ) ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32s, int ) ICV_DEF_FIND_STUMP_THRESHOLD_GINI( 32f, float ) ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 16s, short ) ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32s, int ) ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( 32f, float ) ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 16s, short ) ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32s, int ) ICV_DEF_FIND_STUMP_THRESHOLD_SQ( 32f, float ) typedef int (*CvFindThresholdFunc)( uchar* data, size_t datastep, uchar* wdata, size_t wstep, uchar* ydata, size_t ystep, uchar* idxdata, size_t idxstep, int num, float* lerror, float* rerror, float* threshold, float* left, float* right, float* sumw, float* sumwy, float* sumwyy ); CvFindThresholdFunc findStumpThreshold_16s[4] = { icvFindStumpThreshold_misc_16s, icvFindStumpThreshold_gini_16s, icvFindStumpThreshold_entropy_16s, icvFindStumpThreshold_sq_16s }; CvFindThresholdFunc findStumpThreshold_32s[4] = { icvFindStumpThreshold_misc_32s, icvFindStumpThreshold_gini_32s, icvFindStumpThreshold_entropy_32s, icvFindStumpThreshold_sq_32s }; CvFindThresholdFunc findStumpThreshold_32f[4] = { icvFindStumpThreshold_misc_32f, icvFindStumpThreshold_gini_32f, icvFindStumpThreshold_entropy_32f, icvFindStumpThreshold_sq_32f }; CV_BOOST_IMPL CvClassifier* cvCreateStumpClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* /*typeMask*/, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvStumpClassifier* stump = NULL; int m = 0; /* number of samples */ int n = 0; /* number of components */ uchar* data = NULL; int cstep = 0; int sstep = 0; uchar* ydata = NULL; int ystep = 0; uchar* idxdata = NULL; int idxstep = 0; int l = 0; /* number of indices */ uchar* wdata = NULL; int wstep = 0; int* idx = NULL; int i = 0; float sumw = FLT_MAX; float sumwy = FLT_MAX; float sumwyy = FLT_MAX; CV_Assert( trainData != NULL ); CV_Assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( missedMeasurementsMask == NULL ); CV_Assert( compIdx == NULL ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); CV_Assert( trainParams != NULL ); data = trainData->data.ptr; if( CV_IS_ROW_SAMPLE( flags ) ) { cstep = CV_ELEM_SIZE( trainData->type ); sstep = trainData->step; m = trainData->rows; n = trainData->cols; } else { sstep = CV_ELEM_SIZE( trainData->type ); cstep = trainData->step; m = trainData->cols; n = trainData->rows; } ydata = trainClasses->data.ptr; if( trainClasses->rows == 1 ) { assert( trainClasses->cols == m ); ystep = CV_ELEM_SIZE( trainClasses->type ); } else { assert( trainClasses->rows == m ); ystep = trainClasses->step; } wdata = weights->data.ptr; if( weights->rows == 1 ) { assert( weights->cols == m ); wstep = CV_ELEM_SIZE( weights->type ); } else { assert( weights->rows == m ); wstep = weights->step; } l = m; if( sampleIdx != NULL ) { assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); idxdata = sampleIdx->data.ptr; if( sampleIdx->rows == 1 ) { l = sampleIdx->cols; idxstep = CV_ELEM_SIZE( sampleIdx->type ); } else { l = sampleIdx->rows; idxstep = sampleIdx->step; } assert( l <= m ); } idx = (int*) cvAlloc( l * sizeof( int ) ); stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) ); /* START */ memset( (void*) stump, 0, sizeof( CvStumpClassifier ) ); stump->eval = cvEvalStumpClassifier; stump->tune = NULL; stump->save = NULL; stump->release = cvReleaseStumpClassifier; stump->lerror = FLT_MAX; stump->rerror = FLT_MAX; stump->left = 0.0F; stump->right = 0.0F; /* copy indices */ if( sampleIdx != NULL ) { for( i = 0; i < l; i++ ) { idx[i] = (int) *((float*) (idxdata + i*idxstep)); } } else { for( i = 0; i < l; i++ ) { idx[i] = i; } } for( i = 0; i < n; i++ ) { CvValArray va; va.data = data + i * ((size_t) cstep); va.step = sstep; icvSortIndexedValArray_32s( idx, l, &va ); if( findStumpThreshold_32s[(int) ((CvStumpTrainParams*) trainParams)->error] ( data + i * ((size_t) cstep), sstep, wdata, wstep, ydata, ystep, (uchar*) idx, sizeof( int ), l, &(stump->lerror), &(stump->rerror), &(stump->threshold), &(stump->left), &(stump->right), &sumw, &sumwy, &sumwyy ) ) { stump->compidx = i; } } /* for each component */ /* END */ cvFree( &idx ); if( ((CvStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS ) { stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F; stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F; } return (CvClassifier*) stump; } /* * cvCreateMTStumpClassifier * * Multithreaded stump classifier constructor * Includes huge train data support through callback function */ CV_BOOST_IMPL CvClassifier* cvCreateMTStumpClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* /*typeMask*/, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvStumpClassifier* stump = NULL; int m = 0; /* number of samples */ int n = 0; /* number of components */ uchar* data = NULL; size_t cstep = 0; size_t sstep = 0; int datan = 0; /* num components */ uchar* ydata = NULL; size_t ystep = 0; uchar* idxdata = NULL; size_t idxstep = 0; int l = 0; /* number of indices */ uchar* wdata = NULL; size_t wstep = 0; uchar* sorteddata = NULL; int sortedtype = 0; size_t sortedcstep = 0; /* component step */ size_t sortedsstep = 0; /* sample step */ int sortedn = 0; /* num components */ int sortedm = 0; /* num samples */ char* filter = NULL; int i = 0; int compidx = 0; int stumperror; int portion; /* private variables */ CvMat mat; CvValArray va; float lerror; float rerror; float left; float right; float threshold; int optcompidx; float sumw; float sumwy; float sumwyy; int t_compidx; int t_n; int ti; int tj; int tk; uchar* t_data; size_t t_cstep; size_t t_sstep; size_t matcstep; size_t matsstep; int* t_idx; /* end private variables */ CV_Assert( trainParams != NULL ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( missedMeasurementsMask == NULL ); CV_Assert( compIdx == NULL ); stumperror = (int) ((CvMTStumpTrainParams*) trainParams)->error; ydata = trainClasses->data.ptr; if( trainClasses->rows == 1 ) { m = trainClasses->cols; ystep = CV_ELEM_SIZE( trainClasses->type ); } else { m = trainClasses->rows; ystep = trainClasses->step; } wdata = weights->data.ptr; if( weights->rows == 1 ) { CV_Assert( weights->cols == m ); wstep = CV_ELEM_SIZE( weights->type ); } else { CV_Assert( weights->rows == m ); wstep = weights->step; } if( ((CvMTStumpTrainParams*) trainParams)->sortedIdx != NULL ) { sortedtype = CV_MAT_TYPE( ((CvMTStumpTrainParams*) trainParams)->sortedIdx->type ); assert( sortedtype == CV_16SC1 || sortedtype == CV_32SC1 || sortedtype == CV_32FC1 ); sorteddata = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->data.ptr; sortedsstep = CV_ELEM_SIZE( sortedtype ); sortedcstep = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->step; sortedn = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->rows; sortedm = ((CvMTStumpTrainParams*) trainParams)->sortedIdx->cols; } if( trainData == NULL ) { assert( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL ); n = ((CvMTStumpTrainParams*) trainParams)->numcomp; assert( n > 0 ); } else { assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 ); data = trainData->data.ptr; if( CV_IS_ROW_SAMPLE( flags ) ) { cstep = CV_ELEM_SIZE( trainData->type ); sstep = trainData->step; assert( m == trainData->rows ); datan = n = trainData->cols; } else { sstep = CV_ELEM_SIZE( trainData->type ); cstep = trainData->step; assert( m == trainData->cols ); datan = n = trainData->rows; } if( ((CvMTStumpTrainParams*) trainParams)->getTrainData != NULL ) { n = ((CvMTStumpTrainParams*) trainParams)->numcomp; } } assert( datan <= n ); if( sampleIdx != NULL ) { assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); idxdata = sampleIdx->data.ptr; idxstep = ( sampleIdx->rows == 1 ) ? CV_ELEM_SIZE( sampleIdx->type ) : sampleIdx->step; l = ( sampleIdx->rows == 1 ) ? sampleIdx->cols : sampleIdx->rows; if( sorteddata != NULL ) { filter = (char*) cvAlloc( sizeof( char ) * m ); memset( (void*) filter, 0, sizeof( char ) * m ); for( i = 0; i < l; i++ ) { filter[(int) *((float*) (idxdata + i * idxstep))] = (char) 1; } } } else { l = m; } stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) ); /* START */ memset( (void*) stump, 0, sizeof( CvStumpClassifier ) ); portion = ((CvMTStumpTrainParams*)trainParams)->portion; if( portion < 1 ) { /* auto portion */ portion = n; #ifdef _OPENMP portion /= omp_get_max_threads(); #endif /* _OPENMP */ } stump->eval = cvEvalStumpClassifier; stump->tune = NULL; stump->save = NULL; stump->release = cvReleaseStumpClassifier; stump->lerror = FLT_MAX; stump->rerror = FLT_MAX; stump->left = 0.0F; stump->right = 0.0F; compidx = 0; #ifdef _OPENMP #pragma omp parallel private(mat, va, lerror, rerror, left, right, threshold, optcompidx, sumw, sumwy, sumwyy, t_compidx, t_n, ti, tj, tk, t_data, t_cstep, t_sstep, matcstep, matsstep, t_idx) #endif /* _OPENMP */ { lerror = FLT_MAX; rerror = FLT_MAX; left = 0.0F; right = 0.0F; threshold = 0.0F; optcompidx = 0; sumw = FLT_MAX; sumwy = FLT_MAX; sumwyy = FLT_MAX; t_compidx = 0; t_n = 0; ti = 0; tj = 0; tk = 0; t_data = NULL; t_cstep = 0; t_sstep = 0; matcstep = 0; matsstep = 0; t_idx = NULL; mat.data.ptr = NULL; if( datan < n ) { /* prepare matrix for callback */ if( CV_IS_ROW_SAMPLE( flags ) ) { mat = cvMat( m, portion, CV_32FC1, 0 ); matcstep = CV_ELEM_SIZE( mat.type ); matsstep = mat.step; } else { mat = cvMat( portion, m, CV_32FC1, 0 ); matcstep = mat.step; matsstep = CV_ELEM_SIZE( mat.type ); } mat.data.ptr = (uchar*) cvAlloc( sizeof( float ) * mat.rows * mat.cols ); } if( filter != NULL || sortedn < n ) { t_idx = (int*) cvAlloc( sizeof( int ) * m ); if( sortedn == 0 || filter == NULL ) { if( idxdata != NULL ) { for( ti = 0; ti < l; ti++ ) { t_idx[ti] = (int) *((float*) (idxdata + ti * idxstep)); } } else { for( ti = 0; ti < l; ti++ ) { t_idx[ti] = ti; } } } } #ifdef _OPENMP #pragma omp critical(c_compidx) #endif /* _OPENMP */ { t_compidx = compidx; compidx += portion; } while( t_compidx < n ) { t_n = portion; if( t_compidx < datan ) { t_n = ( t_n < (datan - t_compidx) ) ? t_n : (datan - t_compidx); t_data = data; t_cstep = cstep; t_sstep = sstep; } else { t_n = ( t_n < (n - t_compidx) ) ? t_n : (n - t_compidx); t_cstep = matcstep; t_sstep = matsstep; t_data = mat.data.ptr - t_compidx * ((size_t) t_cstep ); /* calculate components */ ((CvMTStumpTrainParams*)trainParams)->getTrainData( &mat, sampleIdx, compIdx, t_compidx, t_n, ((CvMTStumpTrainParams*)trainParams)->userdata ); } if( sorteddata != NULL ) { if( filter != NULL ) { /* have sorted indices and filter */ switch( sortedtype ) { case CV_16SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((short*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((int*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32FC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { tk = 0; for( tj = 0; tj < sortedm; tj++ ) { int curidx = (int) ( *((float*) (sorteddata + ti * sortedcstep + tj * sortedsstep)) ); if( filter[curidx] != 0 ) { t_idx[tk++] = curidx; } } if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*) t_idx, sizeof( int ), tk, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; default: assert( 0 ); break; } } else { /* have sorted indices */ switch( sortedtype ) { case CV_16SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_16s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32SC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; case CV_32FC1: for( ti = t_compidx; ti < MIN( sortedn, t_compidx + t_n ); ti++ ) { if( findStumpThreshold_32f[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, sorteddata + ti * sortedcstep, sortedsstep, sortedm, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } break; default: assert( 0 ); break; } } } ti = MAX( t_compidx, MIN( sortedn, t_compidx + t_n ) ); for( ; ti < t_compidx + t_n; ti++ ) { va.data = t_data + ti * t_cstep; va.step = t_sstep; icvSortIndexedValArray_32s( t_idx, l, &va ); if( findStumpThreshold_32s[stumperror]( t_data + ti * t_cstep, t_sstep, wdata, wstep, ydata, ystep, (uchar*)t_idx, sizeof( int ), l, &lerror, &rerror, &threshold, &left, &right, &sumw, &sumwy, &sumwyy ) ) { optcompidx = ti; } } #ifdef _OPENMP #pragma omp critical(c_compidx) #endif /* _OPENMP */ { t_compidx = compidx; compidx += portion; } } /* while have training data */ /* get the best classifier */ #ifdef _OPENMP #pragma omp critical(c_beststump) #endif /* _OPENMP */ { if( lerror + rerror < stump->lerror + stump->rerror ) { stump->lerror = lerror; stump->rerror = rerror; stump->compidx = optcompidx; stump->threshold = threshold; stump->left = left; stump->right = right; } } /* free allocated memory */ if( mat.data.ptr != NULL ) { cvFree( &(mat.data.ptr) ); } if( t_idx != NULL ) { cvFree( &t_idx ); } } /* end of parallel region */ /* END */ /* free allocated memory */ if( filter != NULL ) { cvFree( &filter ); } if( ((CvMTStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS ) { stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F; stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F; } return (CvClassifier*) stump; } CV_BOOST_IMPL float cvEvalCARTClassifier( CvClassifier* classifier, CvMat* sample ) { CV_FUNCNAME( "cvEvalCARTClassifier" ); int idx = 0; __BEGIN__; CV_ASSERT( classifier != NULL ); CV_ASSERT( sample != NULL ); CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); if( sample->rows == 1 ) { do { if( (CV_MAT_ELEM( (*sample), float, 0, ((CvCARTClassifier*) classifier)->compidx[idx] )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } else { do { if( (CV_MAT_ELEM( (*sample), float, ((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } __END__; return ((CvCARTClassifier*) classifier)->val[-idx]; } static float cvEvalCARTClassifierIdx( CvClassifier* classifier, CvMat* sample ) { CV_FUNCNAME( "cvEvalCARTClassifierIdx" ); int idx = 0; __BEGIN__; CV_ASSERT( classifier != NULL ); CV_ASSERT( sample != NULL ); CV_ASSERT( CV_MAT_TYPE( sample->type ) == CV_32FC1 ); CV_ASSERT( sample->rows == 1 || sample->cols == 1 ); if( sample->rows == 1 ) { do { if( (CV_MAT_ELEM( (*sample), float, 0, ((CvCARTClassifier*) classifier)->compidx[idx] )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } else { do { if( (CV_MAT_ELEM( (*sample), float, ((CvCARTClassifier*) classifier)->compidx[idx], 0 )) < ((CvCARTClassifier*) classifier)->threshold[idx] ) { idx = ((CvCARTClassifier*) classifier)->left[idx]; } else { idx = ((CvCARTClassifier*) classifier)->right[idx]; } } while( idx > 0 ); } __END__; return (float) (-idx); } CV_BOOST_IMPL void cvReleaseCARTClassifier( CvClassifier** classifier ) { cvFree( classifier ); *classifier = NULL; } static void CV_CDECL icvDefaultSplitIdx_R( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ) { CvMat* trainData = (CvMat*) userdata; int i = 0; *left = cvCreateMat( 1, trainData->rows, CV_32FC1 ); *right = cvCreateMat( 1, trainData->rows, CV_32FC1 ); (*left)->cols = (*right)->cols = 0; if( idx == NULL ) { for( i = 0; i < trainData->rows; i++ ) { if( CV_MAT_ELEM( *trainData, float, i, compidx ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) i; } else { (*right)->data.fl[(*right)->cols++] = (float) i; } } } else { uchar* idxdata; int idxnum; int idxstep; int index; idxdata = idx->data.ptr; idxnum = (idx->rows == 1) ? idx->cols : idx->rows; idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; for( i = 0; i < idxnum; i++ ) { index = (int) *((float*) (idxdata + i * idxstep)); if( CV_MAT_ELEM( *trainData, float, index, compidx ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) index; } else { (*right)->data.fl[(*right)->cols++] = (float) index; } } } } static void CV_CDECL icvDefaultSplitIdx_C( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ) { CvMat* trainData = (CvMat*) userdata; int i = 0; *left = cvCreateMat( 1, trainData->cols, CV_32FC1 ); *right = cvCreateMat( 1, trainData->cols, CV_32FC1 ); (*left)->cols = (*right)->cols = 0; if( idx == NULL ) { for( i = 0; i < trainData->cols; i++ ) { if( CV_MAT_ELEM( *trainData, float, compidx, i ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) i; } else { (*right)->data.fl[(*right)->cols++] = (float) i; } } } else { uchar* idxdata; int idxnum; int idxstep; int index; idxdata = idx->data.ptr; idxnum = (idx->rows == 1) ? idx->cols : idx->rows; idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step; for( i = 0; i < idxnum; i++ ) { index = (int) *((float*) (idxdata + i * idxstep)); if( CV_MAT_ELEM( *trainData, float, compidx, index ) < threshold ) { (*left)->data.fl[(*left)->cols++] = (float) index; } else { (*right)->data.fl[(*right)->cols++] = (float) index; } } } } /* internal structure used in CART creation */ typedef struct CvCARTNode { CvMat* sampleIdx; CvStumpClassifier* stump; int parent; int leftflag; float errdrop; } CvCARTNode; CV_BOOST_IMPL CvClassifier* cvCreateCARTClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* typeMask, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvCARTClassifier* cart = NULL; size_t datasize = 0; int count = 0; int i = 0; int j = 0; CvCARTNode* intnode = NULL; CvCARTNode* list = NULL; int listcount = 0; CvMat* lidx = NULL; CvMat* ridx = NULL; float maxerrdrop = 0.0F; int idx = 0; void (*splitIdxCallback)( int compidx, float threshold, CvMat* idx, CvMat** left, CvMat** right, void* userdata ); void* userdata; count = ((CvCARTTrainParams*) trainParams)->count; assert( count > 0 ); datasize = sizeof( *cart ) + (sizeof( float ) + 3 * sizeof( int )) * count + sizeof( float ) * (count + 1); cart = (CvCARTClassifier*) cvAlloc( datasize ); memset( cart, 0, datasize ); cart->count = count; cart->eval = cvEvalCARTClassifier; cart->save = NULL; cart->release = cvReleaseCARTClassifier; cart->compidx = (int*) (cart + 1); cart->threshold = (float*) (cart->compidx + count); cart->left = (int*) (cart->threshold + count); cart->right = (int*) (cart->left + count); cart->val = (float*) (cart->right + count); datasize = sizeof( CvCARTNode ) * (count + count); intnode = (CvCARTNode*) cvAlloc( datasize ); memset( intnode, 0, datasize ); list = (CvCARTNode*) (intnode + count); splitIdxCallback = ((CvCARTTrainParams*) trainParams)->splitIdx; userdata = ((CvCARTTrainParams*) trainParams)->userdata; if( splitIdxCallback == NULL ) { splitIdxCallback = ( CV_IS_ROW_SAMPLE( flags ) ) ? icvDefaultSplitIdx_R : icvDefaultSplitIdx_C; userdata = trainData; } /* create root of the tree */ intnode[0].sampleIdx = sampleIdx; intnode[0].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); cart->left[0] = cart->right[0] = 0; /* build tree */ listcount = 0; for( i = 1; i < count; i++ ) { /* split last added node */ splitIdxCallback( intnode[i-1].stump->compidx, intnode[i-1].stump->threshold, intnode[i-1].sampleIdx, &lidx, &ridx, userdata ); if( intnode[i-1].stump->lerror != 0.0F ) { list[listcount].sampleIdx = lidx; list[listcount].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, list[listcount].sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); list[listcount].errdrop = intnode[i-1].stump->lerror - (list[listcount].stump->lerror + list[listcount].stump->rerror); list[listcount].leftflag = 1; list[listcount].parent = i-1; listcount++; } else { cvReleaseMat( &lidx ); } if( intnode[i-1].stump->rerror != 0.0F ) { list[listcount].sampleIdx = ridx; list[listcount].stump = (CvStumpClassifier*) ((CvCARTTrainParams*) trainParams)->stumpConstructor( trainData, flags, trainClasses, typeMask, missedMeasurementsMask, compIdx, list[listcount].sampleIdx, weights, ((CvCARTTrainParams*) trainParams)->stumpTrainParams ); list[listcount].errdrop = intnode[i-1].stump->rerror - (list[listcount].stump->lerror + list[listcount].stump->rerror); list[listcount].leftflag = 0; list[listcount].parent = i-1; listcount++; } else { cvReleaseMat( &ridx ); } if( listcount == 0 ) break; /* find the best node to be added to the tree */ idx = 0; maxerrdrop = list[idx].errdrop; for( j = 1; j < listcount; j++ ) { if( list[j].errdrop > maxerrdrop ) { idx = j; maxerrdrop = list[j].errdrop; } } intnode[i] = list[idx]; if( list[idx].leftflag ) { cart->left[list[idx].parent] = i; } else { cart->right[list[idx].parent] = i; } if( idx != (listcount - 1) ) { list[idx] = list[listcount - 1]; } listcount--; } /* fill <cart> fields */ j = 0; cart->count = 0; for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) { cart->count++; cart->compidx[i] = intnode[i].stump->compidx; cart->threshold[i] = intnode[i].stump->threshold; /* leaves */ if( cart->left[i] <= 0 ) { cart->left[i] = -j; cart->val[j] = intnode[i].stump->left; j++; } if( cart->right[i] <= 0 ) { cart->right[i] = -j; cart->val[j] = intnode[i].stump->right; j++; } } /* CLEAN UP */ for( i = 0; i < count && (intnode[i].stump != NULL); i++ ) { intnode[i].stump->release( (CvClassifier**) &(intnode[i].stump) ); if( i != 0 ) { cvReleaseMat( &(intnode[i].sampleIdx) ); } } for( i = 0; i < listcount; i++ ) { list[i].stump->release( (CvClassifier**) &(list[i].stump) ); cvReleaseMat( &(list[i].sampleIdx) ); } cvFree( &intnode ); return (CvClassifier*) cart; } /***************************************************************************************** Boosting * \****************************************************************************************/ typedef struct CvBoostTrainer { CvBoostType type; int count; /* (idx) ? number_of_indices : number_of_samples */ int* idx; float* F; } CvBoostTrainer; /* * cvBoostStartTraining, cvBoostNextWeakClassifier, cvBoostEndTraining * * These functions perform training of 2-class boosting classifier * using ANY appropriate weak classifier */ static CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* /*weights*/, CvMat* sampleIdx, CvBoostType type ) { uchar* ydata; int ystep; int m; uchar* traindata; int trainstep; int trainnum; int i; int idx; size_t datasize; CvBoostTrainer* ptr; int idxnum; int idxstep; uchar* idxdata; assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_Assert( m == trainnum ); idxnum = 0; idxstep = 0; idxdata = NULL; if( sampleIdx ) { CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); } datasize = sizeof( *ptr ) + sizeof( *ptr->idx ) * idxnum; ptr = (CvBoostTrainer*) cvAlloc( datasize ); memset( ptr, 0, datasize ); ptr->F = NULL; ptr->idx = NULL; ptr->count = m; ptr->type = type; if( idxnum > 0 ) { CvScalar s; ptr->idx = (int*) (ptr + 1); ptr->count = idxnum; for( i = 0; i < ptr->count; i++ ) { cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); ptr->idx[i] = (int) s.val[0]; } } for( i = 0; i < ptr->count; i++ ) { idx = (ptr->idx) ? ptr->idx[i] : i; *((float*) (traindata + idx * trainstep)) = 2.0F * (*((float*) (ydata + idx * ystep))) - 1.0F; } return ptr; } /* * * Discrete AdaBoost functions * */ static float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; float sumw; float err; int i; int idx; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; err = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; sumw += *((float*) (wdata + idx*wstep)); err += (*((float*) (wdata + idx*wstep))) * ( (*((float*) (evaldata + idx*evalstep))) != 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ); } err /= sumw; err = -cvLogRatio( err ); for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( err * ((*((float*) (evaldata + idx*evalstep))) != 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx * wstep)) /= sumw; } return err; } /* * * Real AdaBoost functions * */ static float icvBoostNextWeakClassifierRAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; float sumw; int i, idx; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( (-(*((float*) (ydata + idx*ystep))) + 0.5F) * cvLogRatio( *((float*) (evaldata + idx*evalstep)) ) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) /= sumw; } return 1.0F; } /* * * LogitBoost functions * */ #define CV_LB_PROB_THRESH 0.01F #define CV_LB_WEIGHT_THRESHOLD 0.0001F static void icvResponsesAndWeightsLB( int num, uchar* wdata, int wstep, uchar* ydata, int ystep, uchar* fdata, int fstep, uchar* traindata, int trainstep, int* indices ) { int i, idx; float p; for( i = 0; i < num; i++ ) { idx = (indices) ? indices[i] : i; p = 1.0F / (1.0F + expf( -(*((float*) (fdata + idx*fstep)))) ); *((float*) (wdata + idx*wstep)) = MAX( p * (1.0F - p), CV_LB_WEIGHT_THRESHOLD ); if( *((float*) (ydata + idx*ystep)) == 1.0F ) { *((float*) (traindata + idx*trainstep)) = 1.0F / (MAX( p, CV_LB_PROB_THRESH )); } else { *((float*) (traindata + idx*trainstep)) = -1.0F / (MAX( 1.0F - p, CV_LB_PROB_THRESH )); } } } static CvBoostTrainer* icvBoostStartTrainingLB( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ) { size_t datasize; CvBoostTrainer* ptr; uchar* ydata; int ystep; int m; uchar* traindata; int trainstep; int trainnum; uchar* wdata; int wstep; int wnum; int i; int idxnum; int idxstep; uchar* idxdata; assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); assert( weights != NULL ); assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == trainnum ); CV_Assert( m == wnum ); idxnum = 0; idxstep = 0; idxdata = NULL; if( sampleIdx ) { CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum ); } datasize = sizeof( *ptr ) + sizeof( *ptr->F ) * m + sizeof( *ptr->idx ) * idxnum; ptr = (CvBoostTrainer*) cvAlloc( datasize ); memset( ptr, 0, datasize ); ptr->F = (float*) (ptr + 1); ptr->idx = NULL; ptr->count = m; ptr->type = type; if( idxnum > 0 ) { CvScalar s; ptr->idx = (int*) (ptr->F + m); ptr->count = idxnum; for( i = 0; i < ptr->count; i++ ) { cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s ); ptr->idx[i] = (int) s.val[0]; } } for( i = 0; i < m; i++ ) { ptr->F[i] = 0.0F; } icvResponsesAndWeightsLB( ptr->count, wdata, wstep, ydata, ystep, (uchar*) ptr->F, sizeof( *ptr->F ), traindata, trainstep, ptr->idx ); return ptr; } static float icvBoostNextWeakClassifierLB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* traindata; int trainstep; int trainnum; uchar* wdata; int wstep; int wnum; int i, idx; assert( weakEvalVals != NULL ); assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); assert( trainClasses != NULL ); assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); assert( weakTrainVals != NULL ); assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); assert( weights != NULL ); assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); CV_Assert( m == trainnum ); //assert( m == trainer->count ); for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; trainer->F[idx] += *((float*) (evaldata + idx * evalstep)); } icvResponsesAndWeightsLB( trainer->count, wdata, wstep, ydata, ystep, (uchar*) trainer->F, sizeof( *trainer->F ), traindata, trainstep, trainer->idx ); return 1.0F; } /* * * Gentle AdaBoost * */ static float icvBoostNextWeakClassifierGAB( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* /*weakTrainVals*/, CvMat* weights, CvBoostTrainer* trainer ) { uchar* evaldata; int evalstep; int m; uchar* ydata; int ystep; int ynum; uchar* wdata; int wstep; int wnum; int i, idx; float sumw; CV_Assert( weakEvalVals != NULL ); CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 ); CV_Assert( trainClasses != NULL ); CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 ); CV_Assert( weights != NULL ); CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m ); CV_MAT2VEC( *trainClasses, ydata, ystep, ynum ); CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum ); CV_Assert( m == wnum ); sumw = 0.0F; for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( -(*((float*) (evaldata + idx*evalstep))) * ( 2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ) ); sumw += *((float*) (wdata + idx*wstep)); } for( i = 0; i < trainer->count; i++ ) { idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) /= sumw; } return 1.0F; } typedef CvBoostTrainer* (*CvBoostStartTraining)( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ); typedef float (*CvBoostNextWeakClassifier)( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* data ); CvBoostStartTraining startTraining[4] = { icvBoostStartTraining, icvBoostStartTraining, icvBoostStartTrainingLB, icvBoostStartTraining }; CvBoostNextWeakClassifier nextWeakClassifier[4] = { icvBoostNextWeakClassifierDAB, icvBoostNextWeakClassifierRAB, icvBoostNextWeakClassifierLB, icvBoostNextWeakClassifierGAB }; /* * * Dispatchers * */ CV_BOOST_IMPL CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvMat* sampleIdx, CvBoostType type ) { return startTraining[type]( trainClasses, weakTrainVals, weights, sampleIdx, type ); } CV_BOOST_IMPL void cvBoostEndTraining( CvBoostTrainer** trainer ) { cvFree( trainer ); *trainer = NULL; } CV_BOOST_IMPL float cvBoostNextWeakClassifier( CvMat* weakEvalVals, CvMat* trainClasses, CvMat* weakTrainVals, CvMat* weights, CvBoostTrainer* trainer ) { return nextWeakClassifier[trainer->type]( weakEvalVals, trainClasses, weakTrainVals, weights, trainer ); } /***************************************************************************************** Boosted tree models * \****************************************************************************************/ typedef struct CvBtTrainer { /* {{ external */ CvMat* trainData; int flags; CvMat* trainClasses; int m; uchar* ydata; int ystep; CvMat* sampleIdx; int numsamples; float param[2]; CvBoostType type; int numclasses; /* }} external */ CvMTStumpTrainParams stumpParams; CvCARTTrainParams cartParams; float* f; /* F_(m-1) */ CvMat* y; /* yhat */ CvMat* weights; CvBoostTrainer* boosttrainer; } CvBtTrainer; /* * cvBtStart, cvBtNext, cvBtEnd * * These functions perform iterative training of * 2-class (CV_DABCLASS - CV_GABCLASS, CV_L2CLASS), K-class (CV_LKCLASS) classifier * or fit regression model (CV_LSREG, CV_LADREG, CV_MREG) * using decision tree as a weak classifier. */ typedef void (*CvZeroApproxFunc)( float* approx, CvBtTrainer* trainer ); /* Mean zero approximation */ static void icvZeroApproxMean( float* approx, CvBtTrainer* trainer ) { int i; int idx; approx[0] = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { idx = icvGetIdxAt( trainer->sampleIdx, i ); approx[0] += *((float*) (trainer->ydata + idx * trainer->ystep)); } approx[0] /= (float) trainer->numsamples; } /* * Median zero approximation */ static void icvZeroApproxMed( float* approx, CvBtTrainer* trainer ) { int i; int idx; for( i = 0; i < trainer->numsamples; i++ ) { idx = icvGetIdxAt( trainer->sampleIdx, i ); trainer->f[i] = *((float*) (trainer->ydata + idx * trainer->ystep)); } icvSort_32f( trainer->f, trainer->numsamples, 0 ); approx[0] = trainer->f[trainer->numsamples / 2]; } /* * 0.5 * log( mean(y) / (1 - mean(y)) ) where y in {0, 1} */ static void icvZeroApproxLog( float* approx, CvBtTrainer* trainer ) { float y_mean; icvZeroApproxMean( &y_mean, trainer ); approx[0] = 0.5F * cvLogRatio( y_mean ); } /* * 0 zero approximation */ static void icvZeroApprox0( float* approx, CvBtTrainer* trainer ) { int i; for( i = 0; i < trainer->numclasses; i++ ) { approx[i] = 0.0F; } } static CvZeroApproxFunc icvZeroApproxFunc[] = { icvZeroApprox0, /* CV_DABCLASS */ icvZeroApprox0, /* CV_RABCLASS */ icvZeroApprox0, /* CV_LBCLASS */ icvZeroApprox0, /* CV_GABCLASS */ icvZeroApproxLog, /* CV_L2CLASS */ icvZeroApprox0, /* CV_LKCLASS */ icvZeroApproxMean, /* CV_LSREG */ icvZeroApproxMed, /* CV_LADREG */ icvZeroApproxMed, /* CV_MREG */ }; CV_BOOST_IMPL void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ); static CvBtTrainer* cvBtStart( CvCARTClassifier** trees, CvMat* trainData, int flags, CvMat* trainClasses, CvMat* sampleIdx, int numsplits, CvBoostType type, int numclasses, float* param ) { CvBtTrainer* ptr = 0; CV_FUNCNAME( "cvBtStart" ); __BEGIN__; size_t data_size; float* zero_approx; int m; int i, j; if( trees == NULL ) { CV_ERROR( CV_StsNullPtr, "Invalid trees parameter" ); } if( type < CV_DABCLASS || type > CV_MREG ) { CV_ERROR( CV_StsUnsupportedFormat, "Unsupported type parameter" ); } if( type == CV_LKCLASS ) { CV_ASSERT( numclasses >= 2 ); } else { numclasses = 1; } m = MAX( trainClasses->rows, trainClasses->cols ); ptr = NULL; data_size = sizeof( *ptr ); if( type > CV_GABCLASS ) { data_size += m * numclasses * sizeof( *(ptr->f) ); } CV_CALL( ptr = (CvBtTrainer*) cvAlloc( data_size ) ); memset( ptr, 0, data_size ); ptr->f = (float*) (ptr + 1); ptr->trainData = trainData; ptr->flags = flags; ptr->trainClasses = trainClasses; CV_MAT2VEC( *trainClasses, ptr->ydata, ptr->ystep, ptr->m ); memset( &(ptr->cartParams), 0, sizeof( ptr->cartParams ) ); memset( &(ptr->stumpParams), 0, sizeof( ptr->stumpParams ) ); switch( type ) { case CV_DABCLASS: ptr->stumpParams.error = CV_MISCLASSIFICATION; ptr->stumpParams.type = CV_CLASSIFICATION_CLASS; break; case CV_RABCLASS: ptr->stumpParams.error = CV_GINI; ptr->stumpParams.type = CV_CLASSIFICATION; break; default: ptr->stumpParams.error = CV_SQUARE; ptr->stumpParams.type = CV_REGRESSION; } ptr->cartParams.count = numsplits; ptr->cartParams.stumpTrainParams = (CvClassifierTrainParams*) &(ptr->stumpParams); ptr->cartParams.stumpConstructor = cvCreateMTStumpClassifier; ptr->param[0] = param[0]; ptr->param[1] = param[1]; ptr->type = type; ptr->numclasses = numclasses; CV_CALL( ptr->y = cvCreateMat( 1, m, CV_32FC1 ) ); ptr->sampleIdx = sampleIdx; ptr->numsamples = ( sampleIdx == NULL ) ? ptr->m : MAX( sampleIdx->rows, sampleIdx->cols ); ptr->weights = cvCreateMat( 1, m, CV_32FC1 ); cvSet( ptr->weights, cvScalar( 1.0 ) ); if( type <= CV_GABCLASS ) { ptr->boosttrainer = cvBoostStartTraining( ptr->trainClasses, ptr->y, ptr->weights, NULL, type ); CV_CALL( cvBtNext( trees, ptr ) ); } else { data_size = sizeof( *zero_approx ) * numclasses; CV_CALL( zero_approx = (float*) cvAlloc( data_size ) ); icvZeroApproxFunc[type]( zero_approx, ptr ); for( i = 0; i < m; i++ ) { for( j = 0; j < numclasses; j++ ) { ptr->f[i * numclasses + j] = zero_approx[j]; } } CV_CALL( cvBtNext( trees, ptr ) ); for( i = 0; i < numclasses; i++ ) { for( j = 0; j <= trees[i]->count; j++ ) { trees[i]->val[j] += zero_approx[i]; } } CV_CALL( cvFree( &zero_approx ) ); } __END__; return ptr; } static void icvBtNext_LSREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i; /* yhat_i = y_i - F_(m-1)(x_i) */ for( i = 0; i < trainer->m; i++ ) { trainer->y->data.fl[i] = *((float*) (trainer->ydata + i * trainer->ystep)) - trainer->f[i]; } trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); } static void icvBtNext_LADREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int index; int data_size; int* idx; float* resp; int respnum; float val; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resp ); resp = (float*) cvAlloc( data_size ); /* yhat_i = sign(y_i - F_(m-1)(x_i)) */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); trainer->y->data.fl[index] = (float) CV_SIGN( *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index] ); } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( idx[index] == j ) { resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; } } if( respnum > 0 ) { icvSort_32f( resp, respnum, 0 ); val = resp[respnum / 2]; } else { val = 0.0F; } ptr->val[j] = val; } cvFree( &idx ); cvFree( &resp ); trees[0] = ptr; } static void icvBtNext_MREG( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; float* resid; float* resp; int respnum; float rhat; float val; float delta; int index; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resp ); resp = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *resid ); resid = (float*) cvAlloc( data_size ); /* resid_i = (y_i - F_(m-1)(x_i)) */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); resid[index] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; /* for delta */ resp[i] = (float) fabs( resid[index] ); } /* delta = quantile_alpha{abs(resid_i)} */ icvSort_32f( resp, trainer->numsamples, 0 ); delta = resp[(int)(trainer->param[1] * (trainer->numsamples - 1))]; /* yhat_i */ for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); trainer->y->data.fl[index] = MIN( delta, ((float) fabs( resid[index] )) ) * CV_SIGN( resid[index] ); } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, trainer->sampleIdx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( idx[index] == j ) { resp[respnum++] = *((float*) (trainer->ydata + index * trainer->ystep)) - trainer->f[index]; } } if( respnum > 0 ) { /* rhat = median(y_i - F_(m-1)(x_i)) */ icvSort_32f( resp, respnum, 0 ); rhat = resp[respnum / 2]; /* val = sum{sign(r_i - rhat_i) * min(delta, abs(r_i - rhat_i)} * r_i = y_i - F_(m-1)(x_i) */ val = 0.0F; for( i = 0; i < respnum; i++ ) { val += CV_SIGN( resp[i] - rhat ) * MIN( delta, (float) fabs( resp[i] - rhat ) ); } val = rhat + val / (float) respnum; } else { val = 0.0F; } ptr->val[j] = val; } cvFree( &resid ); cvFree( &resp ); cvFree( &idx ); trees[0] = ptr; } //#define CV_VAL_MAX 1e304 //#define CV_LOG_VAL_MAX 700.0 #define CV_VAL_MAX 1e+8 #define CV_LOG_VAL_MAX 18.0 static void icvBtNext_L2CLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { CvCARTClassifier* ptr; int i, j; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; int respnum; float val; double val_f; float sum_weights; float* weights; float* sorted_weights; CvMat* trimmed_idx; CvMat* sample_idx; int index; int trimmed_num; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *weights ); weights = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); /* yhat_i = (4 * y_i - 2) / ( 1 + exp( (4 * y_i - 2) * F_(m-1)(x_i) ) ). * y_i in {0, 1} */ sum_weights = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); val = 4.0F * (*((float*) (trainer->ydata + index * trainer->ystep))) - 2.0F; val_f = val * trainer->f[index]; val_f = ( val_f < CV_LOG_VAL_MAX ) ? exp( val_f ) : CV_LOG_VAL_MAX; val = (float) ( (double) val / ( 1.0 + val_f ) ); trainer->y->data.fl[index] = val; val = (float) fabs( val ); weights[index] = val * (2.0F - val); sorted_weights[i] = weights[index]; sum_weights += sorted_weights[i]; } trimmed_idx = NULL; sample_idx = trainer->sampleIdx; trimmed_num = trainer->numsamples; if( trainer->param[1] < 1.0F ) { /* perform weight trimming */ float threshold; int count; icvSort_32f( sorted_weights, trainer->numsamples, 0 ); sum_weights *= (1.0F - trainer->param[1]); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 ) { trimmed_num = trainer->numsamples - i; trimmed_idx = cvCreateMat( 1, trimmed_num, CV_32FC1 ); count = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( weights[index] >= threshold ) { CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; count++; } } assert( count == trimmed_num ); sample_idx = trimmed_idx; printf( "Used samples %%: %g\n", (float) trimmed_num / (float) trainer->numsamples * 100.0F ); } } ptr = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) ptr, &sample ); } for( j = 0; j <= ptr->count; j++ ) { respnum = 0; val = 0.0F; sum_weights = 0.0F; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); if( idx[index] == j ) { val += trainer->y->data.fl[index]; sum_weights += weights[index]; respnum++; } } if( sum_weights > 0.0F ) { val /= sum_weights; } else { val = 0.0F; } ptr->val[j] = val; } if( trimmed_idx != NULL ) cvReleaseMat( &trimmed_idx ); cvFree( &sorted_weights ); cvFree( &weights ); cvFree( &idx ); trees[0] = ptr; } static void icvBtNext_LKCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i, j, k, kk, num; CvMat sample; int sample_step; uchar* sample_data; int data_size; int* idx; int respnum; float val; float sum_weights; float* weights; float* sorted_weights; CvMat* trimmed_idx; CvMat* sample_idx; int index; int trimmed_num; double sum_exp_f; double exp_f; double f_k; data_size = trainer->m * sizeof( *idx ); idx = (int*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *weights ); weights = (float*) cvAlloc( data_size ); data_size = trainer->m * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); trimmed_idx = cvCreateMat( 1, trainer->numsamples, CV_32FC1 ); for( k = 0; k < trainer->numclasses; k++ ) { /* yhat_i = y_i - p_k(x_i), y_i in {0, 1} */ /* p_k(x_i) = exp(f_k(x_i)) / (sum_exp_f(x_i)) */ sum_weights = 0.0F; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); /* p_k(x_i) = 1 / (1 + sum(exp(f_kk(x_i) - f_k(x_i)))), kk != k */ num = index * trainer->numclasses; f_k = (double) trainer->f[num + k]; sum_exp_f = 1.0; for( kk = 0; kk < trainer->numclasses; kk++ ) { if( kk == k ) continue; exp_f = (double) trainer->f[num + kk] - f_k; exp_f = (exp_f < CV_LOG_VAL_MAX) ? exp( exp_f ) : CV_VAL_MAX; if( exp_f == CV_VAL_MAX || exp_f >= (CV_VAL_MAX - sum_exp_f) ) { sum_exp_f = CV_VAL_MAX; break; } sum_exp_f += exp_f; } val = (float) ( (*((float*) (trainer->ydata + index * trainer->ystep))) == (float) k ); val -= (float) ( (sum_exp_f == CV_VAL_MAX) ? 0.0 : ( 1.0 / sum_exp_f ) ); assert( val >= -1.0F ); assert( val <= 1.0F ); trainer->y->data.fl[index] = val; val = (float) fabs( val ); weights[index] = val * (1.0F - val); sorted_weights[i] = weights[index]; sum_weights += sorted_weights[i]; } sample_idx = trainer->sampleIdx; trimmed_num = trainer->numsamples; if( trainer->param[1] < 1.0F ) { /* perform weight trimming */ float threshold; int count; icvSort_32f( sorted_weights, trainer->numsamples, 0 ); sum_weights *= (1.0F - trainer->param[1]); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (trainer->numsamples - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 ) { trimmed_num = trainer->numsamples - i; trimmed_idx->cols = trimmed_num; count = 0; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); if( weights[index] >= threshold ) { CV_MAT_ELEM( *trimmed_idx, float, 0, count ) = (float) index; count++; } } assert( count == trimmed_num ); sample_idx = trimmed_idx; printf( "k: %d Used samples %%: %g\n", k, (float) trimmed_num / (float) trainer->numsamples * 100.0F ); } } /* weight trimming */ trees[k] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); sample.data.ptr = sample_data + index * sample_step; idx[index] = (int) cvEvalCARTClassifierIdx( (CvClassifier*) trees[k], &sample ); } for( j = 0; j <= trees[k]->count; j++ ) { respnum = 0; val = 0.0F; sum_weights = 0.0F; for( i = 0; i < trimmed_num; i++ ) { index = icvGetIdxAt( sample_idx, i ); if( idx[index] == j ) { val += trainer->y->data.fl[index]; sum_weights += weights[index]; respnum++; } } if( sum_weights > 0.0F ) { val = ((float) (trainer->numclasses - 1)) * val / ((float) (trainer->numclasses)) / sum_weights; } else { val = 0.0F; } trees[k]->val[j] = val; } } /* for each class */ cvReleaseMat( &trimmed_idx ); cvFree( &sorted_weights ); cvFree( &weights ); cvFree( &idx ); } static void icvBtNext_XXBCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer ) { float alpha; int i; CvMat* weak_eval_vals; CvMat* sample_idx; int num_samples; CvMat sample; uchar* sample_data; int sample_step; weak_eval_vals = cvCreateMat( 1, trainer->m, CV_32FC1 ); sample_idx = cvTrimWeights( trainer->weights, trainer->sampleIdx, trainer->param[1] ); num_samples = ( sample_idx == NULL ) ? trainer->m : MAX( sample_idx->rows, sample_idx->cols ); printf( "Used samples %%: %g\n", (float) num_samples / (float) trainer->numsamples * 100.0F ); trees[0] = (CvCARTClassifier*) cvCreateCARTClassifier( trainer->trainData, trainer->flags, trainer->y, NULL, NULL, NULL, sample_idx, trainer->weights, (CvClassifierTrainParams*) &trainer->cartParams ); /* evaluate samples */ CV_GET_SAMPLE( *trainer->trainData, trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *trainer->trainData, trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->m; i++ ) { sample.data.ptr = sample_data + i * sample_step; weak_eval_vals->data.fl[i] = trees[0]->eval( (CvClassifier*) trees[0], &sample ); } alpha = cvBoostNextWeakClassifier( weak_eval_vals, trainer->trainClasses, trainer->y, trainer->weights, trainer->boosttrainer ); /* multiply tree by alpha */ for( i = 0; i <= trees[0]->count; i++ ) { trees[0]->val[i] *= alpha; } if( trainer->type == CV_RABCLASS ) { for( i = 0; i <= trees[0]->count; i++ ) { trees[0]->val[i] = cvLogRatio( trees[0]->val[i] ); } } if( sample_idx != NULL && sample_idx != trainer->sampleIdx ) { cvReleaseMat( &sample_idx ); } cvReleaseMat( &weak_eval_vals ); } typedef void (*CvBtNextFunc)( CvCARTClassifier** trees, CvBtTrainer* trainer ); static CvBtNextFunc icvBtNextFunc[] = { icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_XXBCLASS, icvBtNext_L2CLASS, icvBtNext_LKCLASS, icvBtNext_LSREG, icvBtNext_LADREG, icvBtNext_MREG }; CV_BOOST_IMPL void cvBtNext( CvCARTClassifier** trees, CvBtTrainer* trainer ) { int i, j; int index; CvMat sample; int sample_step; uchar* sample_data; icvBtNextFunc[trainer->type]( trees, trainer ); /* shrinkage */ if( trainer->param[0] != 1.0F ) { for( j = 0; j < trainer->numclasses; j++ ) { for( i = 0; i <= trees[j]->count; i++ ) { trees[j]->val[i] *= trainer->param[0]; } } } if( trainer->type > CV_GABCLASS ) { /* update F_(m-1) */ CV_GET_SAMPLE( *(trainer->trainData), trainer->flags, 0, sample ); CV_GET_SAMPLE_STEP( *(trainer->trainData), trainer->flags, sample_step ); sample_data = sample.data.ptr; for( i = 0; i < trainer->numsamples; i++ ) { index = icvGetIdxAt( trainer->sampleIdx, i ); sample.data.ptr = sample_data + index * sample_step; for( j = 0; j < trainer->numclasses; j++ ) { trainer->f[index * trainer->numclasses + j] += trees[j]->eval( (CvClassifier*) (trees[j]), &sample ); } } } } static void cvBtEnd( CvBtTrainer** trainer ) { CV_FUNCNAME( "cvBtEnd" ); __BEGIN__; if( trainer == NULL || (*trainer) == NULL ) { CV_ERROR( CV_StsNullPtr, "Invalid trainer parameter" ); } if( (*trainer)->y != NULL ) { CV_CALL( cvReleaseMat( &((*trainer)->y) ) ); } if( (*trainer)->weights != NULL ) { CV_CALL( cvReleaseMat( &((*trainer)->weights) ) ); } if( (*trainer)->boosttrainer != NULL ) { CV_CALL( cvBoostEndTraining( &((*trainer)->boosttrainer) ) ); } CV_CALL( cvFree( trainer ) ); __END__; } /***************************************************************************************** Boosted tree model as a classifier * \****************************************************************************************/ static float cvEvalBtClassifier( CvClassifier* classifier, CvMat* sample ) { float val; CV_FUNCNAME( "cvEvalBtClassifier" ); __BEGIN__; int i; val = 0.0F; if( CV_IS_TUNABLE( classifier->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { CV_READ_SEQ_ELEM( tree, reader ); val += tree->eval( (CvClassifier*) tree, sample ); } } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) classifier)->trees; for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { val += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); ptree++; } } __END__; return val; } static float cvEvalBtClassifier2( CvClassifier* classifier, CvMat* sample ) { float val; CV_FUNCNAME( "cvEvalBtClassifier2" ); __BEGIN__; CV_CALL( val = cvEvalBtClassifier( classifier, sample ) ); __END__; return (float) (val >= 0.0F); } static float cvEvalBtClassifierK( CvClassifier* classifier, CvMat* sample ) { int cls = 0; CV_FUNCNAME( "cvEvalBtClassifierK" ); __BEGIN__; int i, k; float max_val; int numclasses; float* vals; size_t data_size; numclasses = ((CvBtClassifier*) classifier)->numclasses; data_size = sizeof( *vals ) * numclasses; CV_CALL( vals = (float*) cvAlloc( data_size ) ); memset( vals, 0, data_size ); if( CV_IS_TUNABLE( classifier->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { for( k = 0; k < numclasses; k++ ) { CV_READ_SEQ_ELEM( tree, reader ); vals[k] += tree->eval( (CvClassifier*) tree, sample ); } } } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) classifier)->trees; for( i = 0; i < ((CvBtClassifier*) classifier)->numiter; i++ ) { for( k = 0; k < numclasses; k++ ) { vals[k] += (*ptree)->eval( (CvClassifier*) (*ptree), sample ); ptree++; } } } max_val = vals[cls]; for( k = 1; k < numclasses; k++ ) { if( vals[k] > max_val ) { max_val = vals[k]; cls = k; } } CV_CALL( cvFree( &vals ) ); __END__; return (float) cls; } typedef float (*CvEvalBtClassifier)( CvClassifier* classifier, CvMat* sample ); static CvEvalBtClassifier icvEvalBtClassifier[] = { cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifier2, cvEvalBtClassifierK, cvEvalBtClassifier, cvEvalBtClassifier, cvEvalBtClassifier }; static int cvSaveBtClassifier( CvClassifier* classifier, const char* filename ) { CV_FUNCNAME( "cvSaveBtClassifier" ); __BEGIN__; FILE* file; int i, j; CvSeqReader reader; memset(&reader, 0, sizeof(reader)); CvCARTClassifier* tree; CV_ASSERT( classifier ); CV_ASSERT( filename ); if( !icvMkDir( filename ) || (file = fopen( filename, "w" )) == 0 ) { CV_ERROR( CV_StsError, "Unable to create file" ); } if( CV_IS_TUNABLE( classifier->flags ) ) { CV_CALL( cvStartReadSeq( ((CvBtClassifier*) classifier)->seq, &reader ) ); } fprintf( file, "%d %d\n%d\n%d\n", (int) ((CvBtClassifier*) classifier)->type, ((CvBtClassifier*) classifier)->numclasses, ((CvBtClassifier*) classifier)->numfeatures, ((CvBtClassifier*) classifier)->numiter ); for( i = 0; i < ((CvBtClassifier*) classifier)->numclasses * ((CvBtClassifier*) classifier)->numiter; i++ ) { if( CV_IS_TUNABLE( classifier->flags ) ) { CV_READ_SEQ_ELEM( tree, reader ); } else { tree = ((CvBtClassifier*) classifier)->trees[i]; } fprintf( file, "%d\n", tree->count ); for( j = 0; j < tree->count; j++ ) { fprintf( file, "%d %g %d %d\n", tree->compidx[j], tree->threshold[j], tree->left[j], tree->right[j] ); } for( j = 0; j <= tree->count; j++ ) { fprintf( file, "%g ", tree->val[j] ); } fprintf( file, "\n" ); } fclose( file ); __END__; return 1; } static void cvReleaseBtClassifier( CvClassifier** ptr ) { CV_FUNCNAME( "cvReleaseBtClassifier" ); __BEGIN__; int i; if( ptr == NULL || *ptr == NULL ) { CV_ERROR( CV_StsNullPtr, "" ); } if( CV_IS_TUNABLE( (*ptr)->flags ) ) { CvSeqReader reader; CvCARTClassifier* tree; CV_CALL( cvStartReadSeq( ((CvBtClassifier*) *ptr)->seq, &reader ) ); for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * ((CvBtClassifier*) *ptr)->numiter; i++ ) { CV_READ_SEQ_ELEM( tree, reader ); tree->release( (CvClassifier**) (&tree) ); } CV_CALL( cvReleaseMemStorage( &(((CvBtClassifier*) *ptr)->seq->storage) ) ); } else { CvCARTClassifier** ptree; ptree = ((CvBtClassifier*) *ptr)->trees; for( i = 0; i < ((CvBtClassifier*) *ptr)->numclasses * ((CvBtClassifier*) *ptr)->numiter; i++ ) { (*ptree)->release( (CvClassifier**) ptree ); ptree++; } } CV_CALL( cvFree( ptr ) ); *ptr = NULL; __END__; } static void cvTuneBtClassifier( CvClassifier* classifier, CvMat*, int flags, CvMat*, CvMat* , CvMat*, CvMat*, CvMat* ) { CV_FUNCNAME( "cvTuneBtClassifier" ); __BEGIN__; size_t data_size; if( CV_IS_TUNABLE( flags ) ) { if( !CV_IS_TUNABLE( classifier->flags ) ) { CV_ERROR( CV_StsUnsupportedFormat, "Classifier does not support tune function" ); } else { /* tune classifier */ CvCARTClassifier** trees; printf( "Iteration %d\n", ((CvBtClassifier*) classifier)->numiter + 1 ); data_size = sizeof( *trees ) * ((CvBtClassifier*) classifier)->numclasses; CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); CV_CALL( cvBtNext( trees, (CvBtTrainer*) ((CvBtClassifier*) classifier)->trainer ) ); CV_CALL( cvSeqPushMulti( ((CvBtClassifier*) classifier)->seq, trees, ((CvBtClassifier*) classifier)->numclasses ) ); CV_CALL( cvFree( &trees ) ); ((CvBtClassifier*) classifier)->numiter++; } } else { if( CV_IS_TUNABLE( classifier->flags ) ) { /* convert */ void* ptr; assert( ((CvBtClassifier*) classifier)->seq->total == ((CvBtClassifier*) classifier)->numiter * ((CvBtClassifier*) classifier)->numclasses ); data_size = sizeof( ((CvBtClassifier*) classifier)->trees[0] ) * ((CvBtClassifier*) classifier)->seq->total; CV_CALL( ptr = cvAlloc( data_size ) ); CV_CALL( cvCvtSeqToArray( ((CvBtClassifier*) classifier)->seq, ptr ) ); CV_CALL( cvReleaseMemStorage( &(((CvBtClassifier*) classifier)->seq->storage) ) ); ((CvBtClassifier*) classifier)->trees = (CvCARTClassifier**) ptr; classifier->flags &= ~CV_TUNABLE; CV_CALL( cvBtEnd( (CvBtTrainer**) &(((CvBtClassifier*) classifier)->trainer )) ); ((CvBtClassifier*) classifier)->trainer = NULL; } } __END__; } static CvBtClassifier* icvAllocBtClassifier( CvBoostType type, int flags, int numclasses, int numiter ) { CvBtClassifier* ptr; size_t data_size; assert( numclasses >= 1 ); assert( numiter >= 0 ); assert( ( numclasses == 1 ) || (type == CV_LKCLASS) ); data_size = sizeof( *ptr ); ptr = (CvBtClassifier*) cvAlloc( data_size ); memset( ptr, 0, data_size ); if( CV_IS_TUNABLE( flags ) ) { ptr->seq = cvCreateSeq( 0, sizeof( *(ptr->seq) ), sizeof( *(ptr->trees) ), cvCreateMemStorage() ); ptr->numiter = 0; } else { data_size = numclasses * numiter * sizeof( *(ptr->trees) ); ptr->trees = (CvCARTClassifier**) cvAlloc( data_size ); memset( ptr->trees, 0, data_size ); ptr->numiter = numiter; } ptr->flags = flags; ptr->numclasses = numclasses; ptr->type = type; ptr->eval = icvEvalBtClassifier[(int) type]; ptr->tune = cvTuneBtClassifier; ptr->save = cvSaveBtClassifier; ptr->release = cvReleaseBtClassifier; return ptr; } CV_BOOST_IMPL CvClassifier* cvCreateBtClassifier( CvMat* trainData, int flags, CvMat* trainClasses, CvMat* typeMask, CvMat* missedMeasurementsMask, CvMat* compIdx, CvMat* sampleIdx, CvMat* weights, CvClassifierTrainParams* trainParams ) { CvBtClassifier* ptr = 0; CV_FUNCNAME( "cvCreateBtClassifier" ); __BEGIN__; CvBoostType type; int num_classes; int num_iter; int i; CvCARTClassifier** trees; size_t data_size; CV_ASSERT( trainData != NULL ); CV_ASSERT( trainClasses != NULL ); CV_ASSERT( typeMask == NULL ); CV_ASSERT( missedMeasurementsMask == NULL ); CV_ASSERT( compIdx == NULL ); CV_ASSERT( weights == NULL ); CV_ASSERT( trainParams != NULL ); type = ((CvBtClassifierTrainParams*) trainParams)->type; if( type >= CV_DABCLASS && type <= CV_GABCLASS && sampleIdx ) { CV_ERROR( CV_StsBadArg, "Sample indices are not supported for this type" ); } if( type == CV_LKCLASS ) { double min_val; double max_val; cvMinMaxLoc( trainClasses, &min_val, &max_val ); num_classes = (int) (max_val + 1.0); CV_ASSERT( num_classes >= 2 ); } else { num_classes = 1; } num_iter = ((CvBtClassifierTrainParams*) trainParams)->numiter; CV_ASSERT( num_iter > 0 ); ptr = icvAllocBtClassifier( type, CV_TUNABLE | flags, num_classes, num_iter ); ptr->numfeatures = (CV_IS_ROW_SAMPLE( flags )) ? trainData->cols : trainData->rows; i = 0; printf( "Iteration %d\n", 1 ); data_size = sizeof( *trees ) * ptr->numclasses; CV_CALL( trees = (CvCARTClassifier**) cvAlloc( data_size ) ); CV_CALL( ptr->trainer = cvBtStart( trees, trainData, flags, trainClasses, sampleIdx, ((CvBtClassifierTrainParams*) trainParams)->numsplits, type, num_classes, &(((CvBtClassifierTrainParams*) trainParams)->param[0]) ) ); CV_CALL( cvSeqPushMulti( ptr->seq, trees, ptr->numclasses ) ); CV_CALL( cvFree( &trees ) ); ptr->numiter++; for( i = 1; i < num_iter; i++ ) { ptr->tune( (CvClassifier*) ptr, NULL, CV_TUNABLE, NULL, NULL, NULL, NULL, NULL ); } if( !CV_IS_TUNABLE( flags ) ) { /* convert */ ptr->tune( (CvClassifier*) ptr, NULL, 0, NULL, NULL, NULL, NULL, NULL ); } __END__; return (CvClassifier*) ptr; } CV_BOOST_IMPL CvClassifier* cvCreateBtClassifierFromFile( const char* filename ) { CvBtClassifier* ptr = 0; CV_FUNCNAME( "cvCreateBtClassifierFromFile" ); __BEGIN__; FILE* file; int i, j; int data_size; int num_classifiers; int num_features; int num_classes; int type; int values_read = -1; CV_ASSERT( filename != NULL ); ptr = NULL; file = fopen( filename, "r" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to open file" ); } values_read = fscanf( file, "%d %d %d %d", &type, &num_classes, &num_features, &num_classifiers ); CV_Assert(values_read == 4); CV_ASSERT( type >= (int) CV_DABCLASS && type <= (int) CV_MREG ); CV_ASSERT( num_features > 0 ); CV_ASSERT( num_classifiers > 0 ); if( (CvBoostType) type != CV_LKCLASS ) { num_classes = 1; } ptr = icvAllocBtClassifier( (CvBoostType) type, 0, num_classes, num_classifiers ); ptr->numfeatures = num_features; for( i = 0; i < num_classes * num_classifiers; i++ ) { int count; CvCARTClassifier* tree; values_read = fscanf( file, "%d", &count ); CV_Assert(values_read == 1); data_size = sizeof( *tree ) + count * ( sizeof( *(tree->compidx) ) + sizeof( *(tree->threshold) ) + sizeof( *(tree->right) ) + sizeof( *(tree->left) ) ) + (count + 1) * ( sizeof( *(tree->val) ) ); CV_CALL( tree = (CvCARTClassifier*) cvAlloc( data_size ) ); memset( tree, 0, data_size ); tree->eval = cvEvalCARTClassifier; tree->tune = NULL; tree->save = NULL; tree->release = cvReleaseCARTClassifier; tree->compidx = (int*) ( tree + 1 ); tree->threshold = (float*) ( tree->compidx + count ); tree->left = (int*) ( tree->threshold + count ); tree->right = (int*) ( tree->left + count ); tree->val = (float*) ( tree->right + count ); tree->count = count; for( j = 0; j < tree->count; j++ ) { values_read = fscanf( file, "%d %g %d %d", &(tree->compidx[j]), &(tree->threshold[j]), &(tree->left[j]), &(tree->right[j]) ); CV_Assert(values_read == 4); } for( j = 0; j <= tree->count; j++ ) { values_read = fscanf( file, "%g", &(tree->val[j]) ); CV_Assert(values_read == 1); } ptr->trees[i] = tree; } fclose( file ); __END__; return (CvClassifier*) ptr; } /***************************************************************************************** Utility functions * \****************************************************************************************/ CV_BOOST_IMPL CvMat* cvTrimWeights( CvMat* weights, CvMat* idx, float factor ) { CvMat* ptr = 0; CV_FUNCNAME( "cvTrimWeights" ); __BEGIN__; int i, index, num; float sum_weights; uchar* wdata; size_t wstep; int wnum; float threshold; int count; float* sorted_weights; CV_ASSERT( CV_MAT_TYPE( weights->type ) == CV_32FC1 ); ptr = idx; sorted_weights = NULL; if( factor > 0.0F && factor < 1.0F ) { size_t data_size; CV_MAT2VEC( *weights, wdata, wstep, wnum ); num = ( idx == NULL ) ? wnum : MAX( idx->rows, idx->cols ); data_size = num * sizeof( *sorted_weights ); sorted_weights = (float*) cvAlloc( data_size ); memset( sorted_weights, 0, data_size ); sum_weights = 0.0F; for( i = 0; i < num; i++ ) { index = icvGetIdxAt( idx, i ); sorted_weights[i] = *((float*) (wdata + index * wstep)); sum_weights += sorted_weights[i]; } icvSort_32f( sorted_weights, num, 0 ); sum_weights *= (1.0F - factor); i = -1; do { sum_weights -= sorted_weights[++i]; } while( sum_weights > 0.0F && i < (num - 1) ); threshold = sorted_weights[i]; while( i > 0 && sorted_weights[i-1] == threshold ) i--; if( i > 0 || ( idx != NULL && CV_MAT_TYPE( idx->type ) != CV_32FC1 ) ) { CV_CALL( ptr = cvCreateMat( 1, num - i, CV_32FC1 ) ); count = 0; for( i = 0; i < num; i++ ) { index = icvGetIdxAt( idx, i ); if( *((float*) (wdata + index * wstep)) >= threshold ) { CV_MAT_ELEM( *ptr, float, 0, count ) = (float) index; count++; } } assert( count == ptr->cols ); } cvFree( &sorted_weights ); } __END__; return ptr; } CV_BOOST_IMPL void cvReadTrainData( const char* filename, int flags, CvMat** trainData, CvMat** trainClasses ) { CV_FUNCNAME( "cvReadTrainData" ); __BEGIN__; FILE* file; int m, n; int i, j; float val; int values_read = -1; if( filename == NULL ) { CV_ERROR( CV_StsNullPtr, "filename must be specified" ); } if( trainData == NULL ) { CV_ERROR( CV_StsNullPtr, "trainData must be not NULL" ); } if( trainClasses == NULL ) { CV_ERROR( CV_StsNullPtr, "trainClasses must be not NULL" ); } *trainData = NULL; *trainClasses = NULL; file = fopen( filename, "r" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to open file" ); } values_read = fscanf( file, "%d %d", &m, &n ); CV_Assert(values_read == 2); if( CV_IS_ROW_SAMPLE( flags ) ) { CV_CALL( *trainData = cvCreateMat( m, n, CV_32FC1 ) ); } else { CV_CALL( *trainData = cvCreateMat( n, m, CV_32FC1 ) ); } CV_CALL( *trainClasses = cvCreateMat( 1, m, CV_32FC1 ) ); for( i = 0; i < m; i++ ) { for( j = 0; j < n; j++ ) { values_read = fscanf( file, "%f", &val ); CV_Assert(values_read == 1); if( CV_IS_ROW_SAMPLE( flags ) ) { CV_MAT_ELEM( **trainData, float, i, j ) = val; } else { CV_MAT_ELEM( **trainData, float, j, i ) = val; } } values_read = fscanf( file, "%f", &val ); CV_Assert(values_read == 2); CV_MAT_ELEM( **trainClasses, float, 0, i ) = val; } fclose( file ); __END__; } CV_BOOST_IMPL void cvWriteTrainData( const char* filename, int flags, CvMat* trainData, CvMat* trainClasses, CvMat* sampleIdx ) { CV_FUNCNAME( "cvWriteTrainData" ); __BEGIN__; FILE* file; int m, n; int i, j; int clsrow; int count; int idx; CvScalar sc; if( filename == NULL ) { CV_ERROR( CV_StsNullPtr, "filename must be specified" ); } if( trainData == NULL || CV_MAT_TYPE( trainData->type ) != CV_32FC1 ) { CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainData" ); } if( CV_IS_ROW_SAMPLE( flags ) ) { m = trainData->rows; n = trainData->cols; } else { n = trainData->rows; m = trainData->cols; } if( trainClasses == NULL || CV_MAT_TYPE( trainClasses->type ) != CV_32FC1 || MIN( trainClasses->rows, trainClasses->cols ) != 1 ) { CV_ERROR( CV_StsUnsupportedFormat, "Invalid trainClasses" ); } clsrow = (trainClasses->rows == 1); if( m != ( (clsrow) ? trainClasses->cols : trainClasses->rows ) ) { CV_ERROR( CV_StsUnmatchedSizes, "Incorrect trainData and trainClasses sizes" ); } if( sampleIdx != NULL ) { count = (sampleIdx->rows == 1) ? sampleIdx->cols : sampleIdx->rows; } else { count = m; } file = fopen( filename, "w" ); if( !file ) { CV_ERROR( CV_StsError, "Unable to create file" ); } fprintf( file, "%d %d\n", count, n ); for( i = 0; i < count; i++ ) { if( sampleIdx ) { if( sampleIdx->rows == 1 ) { sc = cvGet2D( sampleIdx, 0, i ); } else { sc = cvGet2D( sampleIdx, i, 0 ); } idx = (int) sc.val[0]; } else { idx = i; } for( j = 0; j < n; j++ ) { fprintf( file, "%g ", ( (CV_IS_ROW_SAMPLE( flags )) ? CV_MAT_ELEM( *trainData, float, idx, j ) : CV_MAT_ELEM( *trainData, float, j, idx ) ) ); } fprintf( file, "%g\n", ( (clsrow) ? CV_MAT_ELEM( *trainClasses, float, 0, idx ) : CV_MAT_ELEM( *trainClasses, float, idx, 0 ) ) ); } fclose( file ); __END__; } #define ICV_RAND_SHUFFLE( suffix, type ) static void icvRandShuffle_##suffix( uchar* data, size_t step, int num ) { time_t seed; type tmp; int i; float rn; time( &seed ); CvRNG state = cvRNG((int)seed); for( i = 0; i < (num-1); i++ ) { rn = ((float) cvRandInt( &state )) / (1.0F + UINT_MAX); CV_SWAP( *((type*)(data + i * step)), *((type*)(data + ( i + (int)( rn * (num - i ) ) )* step)), tmp ); } } ICV_RAND_SHUFFLE( 8U, uchar ) ICV_RAND_SHUFFLE( 16S, short ) ICV_RAND_SHUFFLE( 32S, int ) ICV_RAND_SHUFFLE( 32F, float ) CV_BOOST_IMPL void cvRandShuffleVec( CvMat* mat ) { CV_FUNCNAME( "cvRandShuffle" ); __BEGIN__; uchar* data; size_t step; int num; if( (mat == NULL) || !CV_IS_MAT( mat ) || MIN( mat->rows, mat->cols ) != 1 ) { CV_ERROR( CV_StsUnsupportedFormat, "" ); } CV_MAT2VEC( *mat, data, step, num ); switch( CV_MAT_TYPE( mat->type ) ) { case CV_8UC1: icvRandShuffle_8U( data, step, num); break; case CV_16SC1: icvRandShuffle_16S( data, step, num); break; case CV_32SC1: icvRandShuffle_32S( data, step, num); break; case CV_32FC1: icvRandShuffle_32F( data, step, num); break; default: CV_ERROR( CV_StsUnsupportedFormat, "" ); } __END__; } /* End of file. */
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:cvboost.cpp opencv源码分析 adaboost
原文地址:http://blog.csdn.net/ding977921830/article/details/46832067