题意 已知LCM(a, b, c) = L 和 a、b、L 求最小的满足等式的c.
把数展开为素因子积的形式后
GCD(a,b)就是a,b的公共素因子取在a、b中的较小指数
LCM(a,b)就是a,b的所有素因子取在a、b中的较大指数
令m = LCM(a,b) 那么问题转化为了求最小的c满足 LCM(m, c) = L
那么最小的c就是L中不在m中的素因子和L中指数大于m中指数的素因子取在L中的指数即积
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } int main() { int T; ll a, b, l, c, d, m; scanf("%d", &T); for(int cas = 1; cas <= T; ++cas) { printf("Case %d: ", cas); scanf("%lld%lld%lld", &a, &b, &l); m = a * b / gcd(a, b); //m为a,b的最大公约数 if(l % m) puts("impossible"); else { //要使lcm(c,m) = l c中至少要有l中不在m中的素因子和l中指数大于m中的素因子取在l中的指数 c = l / m; //现在c中包含了l中不在m中的素因子取l中指数 和 l中指数大于m中的素因子取指数差 //那么现在c还需要乘上c和m的公共素因子取m中的指数 while((d = gcd(c, m)) != 1) //gcd(c,m) 取c,m公共素因子的小指数积 { c = c * d, m = m / d; d = gcd(c, m); } printf("%lld\n", c); } } return 0; }
LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, c) = L if and only if L is the least integer which is divisible by a, b and c.
You will be given a, b and L. You have to find c such that LCM (a, b, c) = L. If there are several solutions, print the one where c is as small as possible. If there is no solution, report so.
Input starts with an integer T (≤ 325), denoting the number of test cases.
Each case starts with a line containing three integers a b L (1 ≤ a, b ≤ 106, 1 ≤ L ≤ 1012).
For each case, print the case number and the minimum possible value of c. If no solution is found, print ‘impossible‘.
Sample Input |
Output for Sample Input |
3 3 5 30 209475 6992 77086800 2 6 10 |
Case 1: 2 Case 2: 1 Case 3: impossible |
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/acvay/article/details/46848679