标签:
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4790
意:从【a。b】中随机找出一个数字x,从【c。d】中随机找出一个数字y。给出p。m,假设(x+y)%p==m则算成功,问成功的概率是多少。
思路:【a。b】中连续p个数。【c,d】中连续p个数。用这2*p个数进行组合能找到p种的成功组合(详细不证),所以找到【a。b】中p循环的个数x1,【c,d】中p循环的个数y1,则它们组成的成功组合数为p*x1*y1。
然后是处理边界的问题,首先x或y处于边界的数的数量一定不超过p-1个,设分别有x2,y2个,这x2。y2个数一定能在相应的每一个循环中找到相应的成功组合。所以还要多出x2*y1+y2*x1个成功组合数。
最后还要在这x2,y2个数里找到互相相应的数。由于要求x2+y2 ≡ m(mod p),所以(m-x2) ≡ y2(mod p),然后找到它们重叠的部分就可以。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <map> #include <cstdlib> #include <queue> #include <stack> #include <vector> #include <ctype.h> #include <algorithm> #include <string> #include <set> #define PI acos(-1.0) #define maxn 10005 #define INF 0x7fffffff #define eps 1e-8 typedef long long LL; typedef unsigned long long ULL; using namespace std; int main() { int T; scanf("%d",&T); for(int ii=1; ii<=T; ii++) { LL a,b,c,d,p,m; scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&d,&p,&m); LL x=b-a+1,y=d-c+1; LL xx=(b-a+1)/p; LL yy=(d-c+1)/p; LL xxx=x-xx*p; LL yyy=y-yy*p; LL t=xx*yy*p; LL fm=x*y; t+=xxx*yy; t+=yyy*xx; if(xxx!=0&&yyy!=0) { LL head=a%p; LL tail=b%p; LL head1=((m-tail)%p+p)%p; LL tail1=((m-head)%p+p)%p; LL head2=c%p; LL tail2=d%p; //cout<<head1<<" "<<tail1<<" "<<head2<<" "<<tail2<<endl; if(tail1>=head1&&tail2>=head2) t+=(max(0LL,(min(tail2,tail1)-max(head1,head2))+1)); else if(tail1>=head1&&tail2<head2) { if(tail1<=tail2) t+=max(0LL,tail1-head1+1); else if(tail1>tail2&&tail1<head2) t+=max(0LL,tail2-head1+1); else t+=max(0LL,tail1-max(head1,head2)+1)+max(0LL,tail2-head1+1); } else if(tail2>=head2&&tail1<head1) { if(tail2<=tail1) t+=max(0LL,tail2-head2+1); else if(tail2>tail1&&tail2<head1) t+=max(0LL,tail1-head2+1); else t+=max(0LL,tail2-max(head1,head2)+1)+max(0LL,tail1-head2+1); } else t+=(p-max(head1,head2)+min(tail1,tail2)+1+max(0LL,tail1-head2+1)+max(0LL,tail2-head1+1)); } printf("Case #%d: ",ii); if(t==0) printf("0/1\n"); else { LL ttt=__gcd(t,fm); printf("%I64d/%I64d\n",t/ttt,fm/ttt); } } return 0; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。
标签:
原文地址:http://www.cnblogs.com/lcchuguo/p/4641135.html