标签:
快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记。
首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:
假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为,例如当b==11时
1 int poww(int a,int b){
2 int ans=1,base=a;
3 while(b!=0){
4 if(b&1!=0)
5 ans*=base;
6 base*=base;
7 b>>=1;
8 }
9 return ans;
10 }
代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是,是从左向右的。我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。
其中要理解base*=base这一步,看:::base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理 base^4*base4=base^8,,,,,see?是不是做到了base-->base^2-->base^4-->base^8-->base^16-->base^32.......指数正是 2^i 啊,再看上 面的例子,= ,这三项是不是完美解决了,,嗯,快速幂就是这样。
顺便啰嗦一句,由于指数函数是爆炸增长的函数,所以很有可能会爆掉int的范围,根据题意决定是用 long long啊还是unsigned int啊还是mod某个数啊自己看着办。
还有,矩阵快速幂的求法唯一的区别就是*换成矩阵中的乘法,写个函数代换嘛,思想一毛一样。。
标签:
原文地址:http://www.cnblogs.com/CXCXCXC/p/4641812.html