题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3644
题意:给定n个点的一个多边形,一个圆的半径,判断圆是否可以放在多边形里,
由于圆形坐标没确定,所以采用模拟退火法来算,不断地减小步长,选取n个点,点在多边形内采用穿线法判断,
精度很坑爹,调了一下午精度,在wa与tle之间徘徊20+次,吐血AC。
代码:
/* *********************************************** Author :rabbit Created Time :2014/7/3 22:46:38 File Name :2.cpp ************************************************ */ #pragma comment(linker, "/STACK:102400000,102400000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define INF 0x3f3f3f3f #define eps 1e-4 #define pi acos(-1.0) typedef long long ll; int dcmp(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } struct Point{ double x,y; Point(double _x=0,double _y=0){ x=_x;y=_y; } }; Point operator + (Point a,Point b){ return Point(a.x+b.x,a.y+b.y); } Point operator - (Point a, Point b){ return Point(a.x-b.x,a.y-b.y); } Point operator * (Point a,double p){ return Point(a.x*p,a.y*p); } Point operator / (Point a,double p){ return Point(a.x/p,a.y/p); } bool operator < (const Point &a,const Point &b){ return a.x<b.x||(a.x==b.x&&a.y<b.y); } bool operator == (const Point &a,const Point &b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double Dot(Point a, Point b){ return a.x*b.x+a.y*b.y; } double Length(Point a){ return sqrt(Dot(a,a)); } double Angle(Point a,Point b){ return acos(Dot(a,b)/Length(a)/Length(b)); } double angle(Point a){ return atan2(a.y,a.x); } double Cross(Point a,Point b){ return a.x*b.y-a.y*b.x; } Point vecnit(Point x){ return x/Length(x); } Point normal(Point x){ return Point(-x.y,x.x)/Length(x); } Point Rotate(Point a,double rad){ return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } Point GetLineIntersection(Point p,Point v,Point q,Point w){ Point u=p-q; double t=Cross(w,u)/Cross(v,w); return p+v*t; } struct Line{ Point p,v; double ang; Line(){}; Line(Point _p,Point _v):p(_p),v(_v){ ang=atan2(v.y,v.x); } Point point(double a){ return p+(v*a); } bool operator < (const Line &L)const{ return ang<L.ang; } }; Point GetLineIntersection(Line a,Line b){ return GetLineIntersection(a.p,a.v,b.p,b.v); } bool OnLeft(const Line &L,const Point &p){ return Cross(L.v,p-L.p)>=0; } bool getdir(Point *p,int n){ double ans=0; for(int i=0;i<n;i++) ans+=Cross(p[i],p[(i+1)%n]); if(dcmp(ans)>0)return 1; return 0; } bool OnSegment(Point p,Point a1,Point a2){ return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<=0; } double DistanceToSegment(Point p,Point a,Point b){ if(a==b)return Length(p-a); Point v1=b-a,v2=p-a,v3=p-b; if(dcmp(Dot(v1,v2))<0)return Length(v2); else if(dcmp(Dot(v1,v3))>0)return Length(v3); else return fabs(Cross(v1,v2))/Length(v1); } int isPointInPolygon(Point p,Point *poly,int n){ int wn=0; for(int i=0;i<n;i++){ if(OnSegment(p,poly[i],poly[(i+1)%n]))return -1; int k=dcmp(Cross(poly[(i+1)%n]-poly[i],p-poly[i])); int d1=dcmp(poly[i].y-p.y); int d2=dcmp(poly[(i+1)%n].y-p.y); if(k>0&&d1<=0&&d2>0)wn++; if(k<0&&d2<=0&&d1>0)wn--; } if(wn!=0)return 1; return 0; } Point p[60],ret[60]; double ans[60]; int n; double cal(Point tt){ double ret=INF; for(int i=0;i<n;i++) ret=min(ret,DistanceToSegment(tt,p[i],p[(i+1)%n])); return ret; } int main() { srand(time(NULL)); while(~scanf("%d",&n)&&n){ double maxx=-INF,minx=INF,maxy=-INF,miny=INF; for(int i=0;i<n;i++){ scanf("%lf%lf",&p[i].x,&p[i].y); maxx=max(maxx,p[i].x); minx=min(minx,p[i].x); maxy=max(maxy,p[i].y); miny=min(miny,p[i].y); } double R; scanf("%lf",&R); bool flag=0; if(getdir(p,n)==0)reverse(p,p+n); maxx-=minx;maxy-=miny; double pp=sqrt(maxx*maxx+maxy*maxy)/2; p[n]=p[0]; for(int i=0;i<n;i++) ret[i]=(p[i]+p[i+1])/2; memset(ans,0,sizeof(ans)); while(!flag&&pp>1e-4){ for(int i=0;!flag&&i<20;i++) for(int j=0;j<5&&!flag;j++){ double gg=rand(); Point temp; temp.x=ret[i].x+pp*cos(gg); temp.y=ret[i].y+pp*sin(gg); if(isPointInPolygon(temp,p,n)){ double ss=cal(temp); if(ss>ans[i]){ ans[i]=ss; ret[i]=temp; if(dcmp(ans[i]-R)>=0)flag=1; } } } pp*=0.8; } if(flag)puts("Yes"); else puts("No"); } }
原文地址:http://blog.csdn.net/xianxingwuguan1/article/details/37053927