题目链接:http://poj.org/problem?id=3169
Description
Input
Output
Sample Input
4 2 1 1 3 10 2 4 20 2 3 3
Sample Output
27
Hint
Source
题意:
给出N头牛,他们是按照顺序编号站在一条直线上的,允许有多头牛在同一个位置!
给出ML对牛,他们允许之间的距离小于等于W
给出MD对牛,他们之间的距离必须是大于等于W的
给出ML+MD的约束条件,求1号牛到N号的最大距离dis[N]!
如果dis[N] = INF,则输出-2;
如果他们之间不存在满足要求的方案,输出-1
其余输出dis[N];
PS:http://blog.csdn.net/zhang20072844/article/details/7788672
代码如下:
#include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define N 20000
#define M 20000
int n, m, k;
int Edgehead[N], dis[N];
struct Edge
{
int v,w,next;
} Edge[2*M];
bool vis[N];
int cont[N];
void Addedge(int u, int v, int w)
{
Edge[k].next = Edgehead[u];
Edge[k].w = w;
Edge[k].v = v;
Edgehead[u] = k++;
}
int SPFA( int start)//stack
{
int sta[N];
int top = 0;
for(int i = 1 ; i <= n ; i++ )
dis[i] = INF;
dis[start] = 0;
++cont[start];
memset(vis,false,sizeof(vis));
sta[++top] = start;
vis[start] = true;
while(top)
{
int u = sta[top--];
vis[u] = false;
for(int i = Edgehead[u]; i != -1; i = Edge[i].next)//注意
{
int v = Edge[i].v;
int w = Edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u]+w;
if( !vis[v] )//防止出现环
{
sta[++top] = v;
vis[v] = true;
}
if(++cont[v] > n)//有负环
return -1;
}
}
}
return dis[n];
}
int main()
{
int u, v, w;
int c;
int ml, md;
while(~scanf("%d%d%d",&n,&ml,&md))//n为目的地
{
k = 1;
memset(Edgehead,-1,sizeof(Edgehead));
for(int i = 1 ; i <= ml; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
}
for(int i = 1 ; i <= md; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(v,u,-w);
}
for(int i = 1; i < n; i++)
{
Addedge(i+1,i,0);
}
int ans = SPFA(1);//从点1开始寻找最短路
if(ans == INF)
{
printf("-2\n");
}
else
{
printf("%d\n",ans);
}
}
return 0;
}版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u012860063/article/details/46862131