题目链接:http://lightoj.com/volume_showproblem.php?problem=1070
Given the value of a+b and ab you will have to find the value of an+bn. a and b not necessarily have to be real numbers.
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains three non-negative integers, p, q and n. Here p denotes the value of a+b and q denotes the value of ab. Each number in the input file fits in a signed 32-bit integer. There will be no such input so that you have to find the value of 00.
For each test case, print the case number and (an+bn) modulo 264.
Sample Input |
Output for Sample Input |
2 10 16 2 7 12 3 |
Case 1: 68 Case 2: 91 |
题意:
给出a+b的值p,a*b的值q,求an+bn的值!
PS:
a^2+b^2 = (a+b)*(a+b) - 2*a*b
a^3+b^3 = (a^2+b^2)*(a+b) - a*b(a+b)
a^4+b^4 = (a^3+b^3)*(a+b) - a*b(a^2+b^2)
所以得到F(n) = a^n+b^n
F(n) = F(n-1)*p - F(n-2)*q
用 unsigned long long ,llu超过2^64会自动取模。
代码如下:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define ULL unsigned long long struct Matrix { ULL m[3][3]; } I,A,B,T; int ssize = 2; Matrix Mul(Matrix a,Matrix b) { int i, j, k; Matrix c; for(i = 1; i <= ssize; i++) { for(j = 1; j <= ssize; j++) { c.m[i][j]=0; for(k = 1; k <= ssize; k++) { c.m[i][j]+=(a.m[i][k]*b.m[k][j]); } } } return c; } Matrix quickpagow(ULL n) { Matrix m = A, b = I; while(n > 0) { if(n & 1) b = Mul(b,m); n = n >> 1; m = Mul(m,m); } return b; } int main() { ULL p, q; ULL a, b, n; int t; int cas = 0; scanf("%d",&t); while(t--) { scanf("%llu%llu%llu",&p,&q,&n); memset(I.m,0,sizeof(I.m)); memset(A.m,0,sizeof(A.m)); memset(B.m,0,sizeof(B.m)); for(int i = 1; i <= ssize; i++) { //单位矩阵 I.m[i][i]=1; } A.m[1][1] = p;//初始化等比矩阵 A.m[1][2] = -q; A.m[2][1] = 1; B.m[1][1] = p; B.m[2][1] = 2; if(n == 0) { printf("Case %d: 2\n",++cas); continue; } T = quickpagow(n-1);//注意n-1为负的情况 T = Mul(T,B); printf("Case %d: %llu\n",++cas,T.m[1][1]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
LOJ 1070 - Algebraic Problem(矩阵快速幂啊)
原文地址:http://blog.csdn.net/u012860063/article/details/46866171