标签:icvgettrainingdataca icvprecalculate opencv源码分析 adaboost
/* *icvPrecalculate *作用:计算特征值,并排序 *具体来说也就是根据训练样本信息和haar特征信息,在函数内部引用icvGetTrainingDataCallback来 *分批计算正负样本的前numprecalated个haar特征值,并把计算好的特征值进行排序,最后结果存储在data->valcache之中 */ static void icvPrecalculate( CvHaarTrainingData* data, //训练样本信息 CvIntHaarFeatures* haarFeatures, //haar特征信息 int numprecalculated ) //预计算特征个数 { CV_FUNCNAME( "icvPrecalculate" ); __BEGIN__; icvReleaseHaarTrainingDataCache( &data ); numprecalculated -= numprecalculated % CV_STUMP_TRAIN_PORTION; numprecalculated = MIN( numprecalculated, haarFeatures->count ); if( numprecalculated > 0 ) { //size_t datasize; int m; CvUserdata userdata; /* private variables */ #ifdef CV_OPENMP CvMat t_data; CvMat t_idx; int first; int t_portion; int portion = CV_STUMP_TRAIN_PORTION; //每批计算特征的数量 #endif /* CV_OPENMP */ m = data->sum.rows; //确定样本总数量,正负样本数之和 #ifdef CV_COL_ARRANGEMENT CV_CALL( data->valcache = cvCreateMat( numprecalculated, m, CV_32FC1 ) ); //下面这三组代码是给data->valcache和data->idxcache分配内存 #else CV_CALL( data->valcache = cvCreateMat( m, numprecalculated, CV_32FC1 ) ); #endif CV_CALL( data->idxcache = cvCreateMat( numprecalculated, m, CV_IDX_MAT_TYPE ) ); userdata = cvUserdata( data, haarFeatures ); #ifdef CV_OPENMP #pragma omp parallel for private(t_data, t_idx, first, t_portion) for( first = 0; first < numprecalculated; first += portion ) { t_data = *data->valcache; t_idx = *data->idxcache; t_portion = MIN( portion, (numprecalculated - first) ); /* indices */ t_idx.rows = t_portion; //每批计算特征的个数 t_idx.data.ptr = data->idxcache->data.ptr + first * ((size_t)t_idx.step); /* feature values */ #ifdef CV_COL_ARRANGEMENT t_data.rows = t_portion; t_data.data.ptr = data->valcache->data.ptr + first * ((size_t) t_data.step ); #else t_data.cols = t_portion; t_data.data.ptr = data->valcache->data.ptr + first * ((size_t) CV_ELEM_SIZE( t_data.type )); #endif icvGetTrainingDataCallback( &t_data, NULL, NULL, first, t_portion, &userdata ); #ifdef CV_COL_ARRANGEMENT cvGetSortedIndices( &t_data, &t_idx, 0 ); #else cvGetSortedIndices( &t_data, &t_idx, 1 ); #endif #ifdef CV_VERBOSE putc( '.', stderr ); fflush( stderr ); #endif /* CV_VERBOSE */ } #ifdef CV_VERBOSE fprintf( stderr, "\n" ); fflush( stderr ); #endif /* CV_VERBOSE */ #else icvGetTrainingDataCallback( data->valcache, NULL, NULL, 0, numprecalculated, &userdata ); //调用icvGetTrainingDataCallback函数计算特征值,把计算好的特征值存储在data->valcache中 #ifdef CV_COL_ARRANGEMENT cvGetSortedIndices( data->valcache, data->idxcache, 0 ); //对计算好的特征值data->valcache进行排序,并存储在data->idxcache中 #else cvGetSortedIndices( data->valcache, data->idxcache, 1 ); #endif #endif /* CV_OPENMP */ } __END__; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:icvgettrainingdataca icvprecalculate opencv源码分析 adaboost
原文地址:http://blog.csdn.net/ding977921830/article/details/46877295