码迷,mamicode.com
首页 > 其他好文 > 详细

区间dp的典例

时间:2015-07-14 19:39:37      阅读:83      评论:0      收藏:0      [点我收藏+]

标签:

区间dp, 属于dp的一种,顾名思义,便是对区间处理的dp,其中石子归并,括号匹配,整数划分最为典型。

(1)石子归并

技术分享

dp三要素:阶段,状态,决策。

首先我们从第i堆石子到第j堆石子合并所花费的最小费用设为dp[i][j], 然后去想状态转移方程,dp[i][j]必然有两堆石子合并而来, 那么我们很快就可以退出状态转移方程为dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + s);(s为两堆石子的总和)

下面附上代码

技术分享
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 const int N = 200 + 5;
 6 int a[N], dp[N][N], n, sum[N];
 7 
 8 void work(){
 9     for(int l = 1; l <= n; l ++){
10         for(int i = 1; i + l <= n; i ++){
11             int j = i + l;
12             for(int k = i; k <= j; k ++){
13                 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]);
14             }
15         }
16     }
17     printf("%d\n", dp[1][n]);
18 }
19 
20 int main(){
21     while(scanf("%d", &n) == 1){
22         memset(dp, 0x3f,sizeof(dp));
23         for(int i = 1; i <= n; i ++){
24             scanf("%d", a + i);
25             sum[i] = sum[i-1] + a[i];
26             dp[i][i] = 0;
27         }
28         work();
29     }
30     return 0;
31 }
View Code

当然还有变形题

技术分享

思路差不多只不过把两个数的和改成积(ps:在处理前缀和的时候千万别取余,否则可能出现负数)

附上代码:

技术分享
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 const int N = 200 + 5;
 6 int a[N], dp[N][N], n, ans, sum[N];
 7 
 8 void  work(){
 9     for(int l  = 2; l <= n; l ++){
10         for(int i = 1; i <= n - l + 1; i ++){
11             int j = i + l - 1;
12             for(int k = i; k < j; k ++){
13                 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + ((sum[j] - sum[k])%100)*((sum[k] - sum[i-1])%100));
14             }
15         }
16     }
17     printf("%d\n", dp[1][n]);
18 }
19 
20 int main(){
21     while(scanf("%d", &n) == 1){
22         for(int i = 1; i <= n; i ++)
23             for(int j = 1; j <= n; j ++)
24                 dp[i][j] = (1 << 30);
25         for(int i = 1; i <= n; i ++){
26             scanf("%d", a + i);
27             sum[i] = sum[i-1] + a[i];
28             dp[i][i] = 0;
29         }
30         work();
31     }
32     return 0;
33 }
View Code

(2)括号匹配

技术分享

这题解释括号匹配的例题,只要找到这个字符串中括号最大匹配量t,就可以得出答案,设长度为l,则ans = l - t;

我们设dp[i][j] 为第i位到第j位最大的括号匹配量, 则他的转移方程为

dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);

当然如果第i位刚好与第j位刚好匹配

则dp[i][j] = dp[i+1][j-1] + 2;

下面附上代码

技术分享
 1 #include <cstdio>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 
 7 string s;
 8 
 9 int n, dp[105][105];
10 
11 int main(){
12     int T;
13     scanf("%d", &T);
14     while(T--){
15         cin >> s;
16         memset(dp, 0, sizeof(dp));
17         for(int l = 0; l < s.size(); l ++){
18             for(int i = 0; i + l < s.size(); i ++){
19                 int j = i + l;
20                 if(s[i] == ( && s[j] == ))
21                    dp[i][j] = dp[i+1][j-1] + 2; 
22                 if(s[i] == [ && s[j] == ])
23                     dp[i][j] = dp[i+1][j-1] + 2;
24                 for(int k = i; k <= j; k ++){
25                     dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]);
26                 }
27             }
28         }
29         printf("%d\n", s.size() - dp[0][s.size()-1]);
30     }
31     return 0;
32 }
View Code

(3)整数划分

技术分享

当初一看到这一题的时候感觉像是搜索题,仔细一想才明白是一道区间dp题,既然是dp,当然要先找到状态了,设dp[i][j]为前i位中存在j个乘号

我们以a[i][j]表示第i位到第j位的值,则可以推出状态转移方程为dp[i][j] = max(dp[i][j], dp[i][k] * a[k+1][j]);

附上代码

技术分享
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 typedef long long ll;
 6 const int N = 100 + 5;
 7 
 8 ll a[N][N], dp[N][N];
 9 int n, T, c[N];
10 char s[N];
11 
12 void work(){
13     for(int j = 0; j < n; j ++){
14         for(int i = 1; i <= strlen(s); i ++){
15             for(int k = 1; k <= i; k ++){
16                 if(j==0)
17                     dp[i][0] = a[1][i];
18                 else
19                     dp[i][j] = max(dp[i][j], dp[k][j-1] * a[k+1][i]);
20                 /*for(int p = 1; p <= strlen(s); p ++){
21                     for(int q = 0; q < n; q ++)
22                         printf("%d ", dp[p][q]);
23                     puts("");
24                 }*/
25             }
26         }
27     }
28     printf("%lld\n", dp[strlen(s)][n-1]);
29 }
30 
31 int main(){
32     scanf("%d", &T);
33     while(T--){
34         scanf("%s%d" , s, &n);
35         int flag = 0;
36         if(n > strlen(s)){
37             printf("0\n");
38             continue;
39         }
40         memset(a, 0, sizeof(a));
41         memset(dp, 0, sizeof(dp));
42         for(int i = 0; i < strlen(s); i ++)
43             c[i+1] = s[i] - 0;
44         for(int i = 1; i <= strlen(s); i ++){
45             for(int j = i; j <= strlen(s); j ++){
46                     a[i][j] = a[i][j-1] * 10 + c[i];
47                 }
48             }
49         }
50         /*for(int i = 1; i <= strlen(s); i ++){
51             for(int j = i; j <= strlen(s); j ++)
52                 printf("%I64d ", a[i][j]);
53             puts("");
54         }*/
55         work();
56     }
57     return 0;
58 }
View Code

 

区间dp的典例

标签:

原文地址:http://www.cnblogs.com/zyf0163/p/4645923.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!