码迷,mamicode.com
首页 > 其他好文 > 详细

Hadoop生产集群的监视——计数器

时间:2015-07-15 18:57:10      阅读:334      评论:0      收藏:0      [点我收藏+]

标签:

  可以在Hadoop作业中插桩计数器来分析其整体运作。在程序中定义不同的计数器,分别累计特定事件的发生次数。对于来自同一个作业所有任务的相同计数器,Hadoop会自动对它们进行求和, 以反映整个作业的情况。这些计数器的数值会在JobTracker的Web用户界面中与Hadoop的内部计数器一起显示。

  计数器的典型应用是用来跟踪不同的输入记录类型,特别是跟踪“坏”记录。例如,我们得到的数据集格式为(只显示一部分):

"PATENT","GYEAR","GDATE","APPYEAR","COUNTRY","POSTATE","ASSIGNEE","ASSCODE","CLAIMS","NCLASS","CAT","SUBCAT","CMADE","CRECEIVE","RATIOCIT","GENERAL","ORIGINAL","FWDAPLAG","BCKGTLAG","SELFCTUB","SELFCTLB","SECDUPBD","SECDLWBD"
3070801,1963,1096,,"BE","",,1,,269,6,69,,1,,0,,,,,,,
3070802,1963,1096,,"US","TX",,1,,2,6,63,,0,,,,,,,,,
3070803,1963,1096,,"US","IL",,1,,2,6,63,,9,,0.3704,,,,,,,
3070804,1963,1096,,"US","OH",,1,,2,6,63,,3,,0.6667,,,,,,,
3070805,1963,1096,,"US","CA",,1,,2,6,63,,1,,0,,,,,,,
3070806,1963,1096,,"US","PA",,1,,2,6,63,,0,,,,,,,,,
3070807,1963,1096,,"US","OH",,1,,623,3,39,,3,,0.4444,,,,,,,
3070808,1963,1096,,"US","IA",,1,,623,3,39,,4,,0.375,,,,,,,
3070809,1963,1096,,"US","AZ",,1,,4,6,65,,0,,,,,,,,,
3070810,1963,1096,,"US","IL",,1,,4,6,65,,3,,0.4444,,,,,,,
3070811,1963,1096,,"US","CA",,1,,4,6,65,,8,,0,,,,,,,
3070812,1963,1096,,"US","LA",,1,,4,6,65,,3,,0.4444,,,,,,,
3070813,1963,1096,,"US","NY",,1,,5,6,65,,2,,0,,,,,,,
3070814,1963,1096,,"US","MN",,2,,267,5,59,,2,,0.5,,,,,,,
3070815,1963,1096,,"US","CO",,1,,7,5,59,,1,,0,,,,,,,
3070816,1963,1096,,"US","OK",,1,,114,5,55,,4,,0,,,,,,,
3070817,1963,1096,,"US","RI",,2,,114,5,55,,5,,0.64,,,,,,,
3070818,1963,1096,,"US","IN",,1,,441,6,69,,4,,0.625,,,,,,,
3070819,1963,1096,,"US","TN",,4,,12,6,63,,0,,,,,,,,,
3070820,1963,1096,,"GB","",,2,,12,6,63,,0,,,,,,,,,
3070821,1963,1096,,"US","IL",,2,,15,6,69,,1,,0,,,,,,,
3070822,1963,1096,,"US","NY",,2,,401,1,12,,4,,0.375,,,,,,,
3070823,1963,1096,,"US","MI",,1,,401,1,12,,8,,0.6563,,,,,,,
3070824,1963,1096,,"US","IL",,1,,401,1,12,,5,,0.48,,,,,,,
3070825,1963,1096,,"US","IL",,1,,401,1,12,,7,,0.6531,,,,,,,
3070826,1963,1096,,"US","IA",,1,,401,1,12,,1,,0,,,,,,,
3070827,1963,1096,,"US","CA",,4,,401,1,12,,2,,0.5,,,,,,,
3070828,1963,1096,,"US","CT",,2,,16,5,59,,4,,0.625,,,,,,,
3070829,1963,1096,,"FR","",,3,,16,5,59,,5,,0.48,,,,,,,
3070830,1963,1096,,"US","NH",,2,,16,5,59,,0,,,,,,,,,
3070831,1963,1096,,"US","CT",,2,,16,5,59,,0,,,,,,,,,
3070832,1963,1096,,"US","LA",,2,,452,6,61,,1,,0,,,,,,,
3070833,1963,1096,,"US","LA",,1,,452,6,61,,5,,0,,,,,,,
3070834,1963,1096,,"US","FL",,1,,452,6,61,,3,,0.4444,,,,,,,
3070835,1963,1096,,"US","IL",,2,,264,5,51,,5,,0.64,,,,,,,
3070836,1963,1096,,"US","OK",,2,,264,5,51,,24,,0.7569,,,,,,,
3070837,1963,1096,,"CH","",,3,,264,5,51,,7,,0.6122,,,,,,,
3070838,1963,1096,,"CH","",,5,,425,5,51,,5,,0.48,,,,,,,
3070839,1963,1096,,"US","TN",,2,,425,5,51,,8,,0.4063,,,,,,,
3070840,1963,1096,,"GB","",,3,,425,5,51,,6,,0.7778,,,,,,,
3070841,1963,1096,,"US","OH",,2,,264,5,51,,6,,0.8333,,,,,,,
3070842,1963,1096,,"US","TX",,1,,425,5,51,,1,,0,,,,,,,
3070843,1963,1096,,"US","NY",,2,,425,5,51,,1,,0,,,,,,,
3070844,1963,1096,,"US","OH",,2,,425,5,51,,2,,0,,,,,,,
3070845,1963,1096,,"US","IL",,1,,52,6,69,,3,,0,,,,,,,
3070846,1963,1096,,"US","NY",,2,,425,5,51,,9,,0.7407,,,,,,,

我们想要计算每个国家专利声明的平均数,但是在许多记录中没有声明数。我们的程序会忽略这些记录,知道被忽略记录的数量是有用的。除了满足我们的好奇心,这种插桩让我们理解程序的操作并对其正确性做一些检查。

  通过Reporter.incrCounter( )方法来使用计数器。Reporter对象被传递给map( )和reduce( )方法。以计数器名以及增量为参数来调用incrCounter( ) 。每个不同的事件都有一个独立命名的计数器。当用一个新的计数器名来调用incrCounter( ),这个计数器会被初始化并进行值的累加。

  Reporter.incrCounter( )方法有两种签名:

public void incrCounter(String group, String counter, long amount)
public void incrCounter(Enum key, long amount)

  如下是使用了计数器之后的计算每个国家专利声明平均数的代码段:

package hadoop.in.action;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.RunningJob;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class AverageByAttribute {

    public static class MapClass extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, Text> {

        static enum ClaimsCounters {
            MISSING, QUOTED
        };

        private Text k = new Text();
        private Text v = new Text();

        @Override
        public void map(LongWritable key, Text value,
                OutputCollector<Text, Text> output, Reporter reporter)
                throws IOException {

            String[] fields = value.toString().split(",", -1);
            String country = fields[4];
            String numClaims = fields[8];
            if (numClaims.length() == 0) {
                reporter.incrCounter(ClaimsCounters.MISSING, 1);
            } else {
                if (numClaims.startsWith("\"")) {
                    reporter.incrCounter(ClaimsCounters.QUOTED, 1);
                } else {
                    k.set(country);
                    v.set(numClaims + ",1");
                    output.collect(k, v);
                }
            }

        }

    }

    public static class CombineClass extends MapReduceBase implements
            Reducer<Text, Text, Text, Text> {

        private Text v = new Text();

        @Override
        public void reduce(Text key, Iterator<Text> values,
                OutputCollector<Text, Text> output, Reporter reporter)
                throws IOException {

            int count = 0;
            double sum = 0;
            while (values.hasNext()) {
                String[] fields = values.next().toString().split(",");
                sum += Double.parseDouble(fields[0]);
                count += Integer.parseInt(fields[1]);
                v.set(sum + "," + count);
                output.collect(key, v);
            }
        }

    }

    public static class ReduceClass extends MapReduceBase implements
            Reducer<Text, Text, Text, DoubleWritable> {

        private DoubleWritable v = new DoubleWritable();

        @Override
        public void reduce(Text key, Iterator<Text> values,
                OutputCollector<Text, DoubleWritable> output, Reporter reporter)
                throws IOException {

            int count = 0;
            double sum = 0;
            while (values.hasNext()) {
                String[] fields = values.next().toString().split(",");
                sum += Double.parseDouble(fields[0]);
                count += Integer.parseInt(fields[1]);
            }
            v.set((double) sum / count);
            output.collect(key, v);
        }

    }

    public static void run() throws IOException {

        Configuration configuration = new Configuration();
        JobConf jobConf = new JobConf(configuration, AverageByAttribute.class);

        String input = "hdfs://localhost:9000/user/hadoop/input/apat63_99.txt";
        String output = "hdfs://localhost:9000/user/hadoop/output";

        // HDFSDao hdfsDao = new HDFSDao(configuration);
        // hdfsDao.rmr(output);

        FileInputFormat.setInputPaths(jobConf, new Path(input));
        FileOutputFormat.setOutputPath(jobConf, new Path(output));

        jobConf.setInputFormat(TextInputFormat.class);
        jobConf.setOutputFormat(TextOutputFormat.class);

        jobConf.setMapOutputKeyClass(Text.class);
        jobConf.setMapOutputValueClass(Text.class);
        jobConf.setOutputKeyClass(Text.class);
        jobConf.setOutputValueClass(DoubleWritable.class);

        jobConf.setMapperClass(MapClass.class);
        jobConf.setCombinerClass(CombineClass.class);
        jobConf.setReducerClass(ReduceClass.class);

        RunningJob runningJob = JobClient.runJob(jobConf);
        while (!runningJob.isComplete()) {
            runningJob.waitForCompletion();
        }

    }

    public static void main(String[] args) throws IOException {

        run();

    }

}

  程序运行后,可以看到定义的计数器和Hadoop内部的计数器都被显示在JobTracker的Web用户界面中:

技术分享

Hadoop生产集群的监视——计数器

标签:

原文地址:http://www.cnblogs.com/Murcielago/p/4649130.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!