标签:leetcode
Given an array of n integers where n > 1, nums
,
return an array output
such that output[i]
is
equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
,
return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
sdf
前几天刚看facebook的面经出现这题, leetocde就加上了, 不能用除法, 则维护当前元素左边所有元素的乘积以及右边所有元素的乘积, 相乘得到 product of array except self !
Because we cannot use division, so assume we have two integer arrays with the same length of nums, int[]
leftProd = new int[nums.length]; int[] rightProd = new int[nums.length]
, we store the product of all the left elements in leftProd
and
the product of all the right elements in rightProd
,
then the product of leftProd[i]
and rightProd[i]
will
be the value we want to put into the result. take the example of num[] = {2, 4, 3, 6}
,
thenleftProd
will
be {1, 2, 8, 24}
,
and rightProd will be {72, 18, 6, 1}
.
public class Solution { public int[] productExceptSelf(int[] nums) { if(nums == null) return null; int[] res = new int[nums.length]; for(int i = 0; i < nums.length; i++){ if(i == 0) res[i] = 1; else res[i] = res[i - 1] * nums[i - 1]; } int prod = 1; for(int i = nums.length - 1; i >= 0; i--){ res[i] = res[i] * prod; prod *= nums[i]; } return res; } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
#leetcode#Product of Array Except Self
标签:leetcode
原文地址:http://blog.csdn.net/chibaoneliuliuni/article/details/46908181