Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance。受到一篇Edit Distance介绍文章的启发,本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行讲解。 1. what is minimal edit distance? 简单地说,就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到另一个字符串s2的最少步骤数。熟悉算法的同学很容易知道这是个动态规划问题。 其实一个替换操作可以相当于一个delete+一个insert,所以我们将权值定义如下: I (insert):1 D (delete):1 S (substitute):2 2. example: intention->execution Minimal edit distance: delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=8 3.calculate minimal edit distance dynamically 思路见注释,这里D[i,j]就是取s1前i个character和s2前j个character所得minimal edit distance 三个操作动态进行更新: D(i,j)=min { D(i-1, j) +1, D(i, j-1) +1 , D(i-1, j-1) + s1[i]==s2[j] ? 0 : 2};中的三项分别对应D,I,S。(详见我同学的博客)
public class Solution { public int minDistance(String word1, String word2) { //边界条件 if(word1.length() == 0) return word2.length(); if(word2.length() == 0) return word1.length(); /* * 本题用动态规划的解法 * f[i][j]表示word1的前i个单词到word2前j个单词的最短距离 * 状态转移方程:f[i][j] = */ int[][] f = new int[word1.length()][word2.length()]; boolean isEquals = false;//是否已经有相等 for(int i = 0 ; i < word2.length(); i++){ //如果相等,则距离不增加 if(word1.charAt(0) == word2.charAt(i) && !isEquals){ f[0][i] = i > 0 ? f[0][i-1]:0;//不能从0开始 isEquals = true; }else{ f[0][i] = i > 0 ? f[0][i-1]+1:1; } } isEquals = false;//是否已经有相等 for(int i = 1 ; i < word1.length(); i++){ //如果相等,则距离不增加 if(word1.charAt(i) == word2.charAt(0) && !isEquals){ f[i][0] = f[i-1][0];//不能从0开始 isEquals = true; }else{ f[i][0] = f[i-1][0]+1; } } for(int i = 1; i < word1.length();i++){ for(int j = 1; j < word2.length(); j++){ if(word1.charAt(i) == word2.charAt(j)){ f[i][j] = f[i-1][j-1];//相等的话直接相等 }else{ f[i][j] = f[i-1][j-1]+1; } //然后与从f[i-1][j]+1,f[i][j-1]+1比较,取最小值 f[i][j] = Math.min(f[i][j],Math.min(f[i-1][j]+1,f[i][j-1]+1)); } } return f[word1.length()-1][word2.length()-1]; } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
leetCode 72.Edit Distance (编辑距离) 解题思路和方法
原文地址:http://blog.csdn.net/xygy8860/article/details/46929835