码迷,mamicode.com
首页 > 其他好文 > 详细

跟着vamei复习概率论

时间:2015-07-18 22:31:13      阅读:231      评论:0      收藏:0      [点我收藏+]

标签:

最近重新看了一下概率论,感觉很多东西都遗忘了,还会陷入各种误区,赶紧的纠正回来。

概率论这块,主要内容包括:

事件、条件概率、随机变量、随机变量的分布函数、概率密度、联合分布、期望、方差、协方差。

我自己的误区总结:

1.事件和随机变量

首先要明确样本空间是所有可能发生的事件的集合,它由全部基本事件组成。而事件是基本时间的集合,是样本空间的子集,事件是固定的,或者说事件的概率是固定的(贝叶斯学派加入的先验概率先不考虑)。而随机变量一个映射,是从事件到实数的映射,随机变量表达了整个样本空间,描述了各种事件组合的可能,具备了期望方差等各种属性。所以,事件和随机变量是完全不同的概念,一静一动,不可搞混。

举个栗子,掷一个骰子一次,对应的基本事件就是骰子出现1的面、...、掷骰子出现6的面。基本事件是死的,他们的概率也是死的是1/6。针对一次骰子实验我们可以定义随机变量X,用X的实数值表达基本事件,比如X=1表示出现面1,X=6表示出现面6。

这样我们就去分开了事件和随机变量。

对于随机变量,有一个重要的概念就是累计分布函数(CDF,cumlative distribution function),用来表示随机变量概率分布的情况。显然累计分布函数正无穷大的极限是1,此外还有右连续、不递减等特型。

举个例子:

做两次抛硬币的实验,随机变量X表示正面出现的次数,显然,X=0,1,2,概率分别为:0.25,0.5,0.25. 其CDF如下:

技术分享

代码如下:

>>> x = [-1, 0, 0, 1, 1, 2, 2, 3]
>>> y = [0, 0, 0.25, 0.25, 0.75, 0.75, 1, 1]
>>> fig = plt.figure()
>>> ax = plt.subplot()
>>> ax = plt.subplot(111)
>>> ax.plot(x,y)
[<matplotlib.lines.Line2D object at 0x10b5b4e10>]
>>> ax.set_ylim([-0.1, 1.1])
(-0.1, 1.1)
>>> ax.set_title("CDF plot")
<matplotlib.text.Text object at 0x10b59e950>
>>> plt.show()

 

1.2 条件概率的误区

实际上1.1理解了,1.2自然就理解了。就是随机事件的条件概率和随机变量的条件概率的区别。首先两者都可以计算条件概率,或者说条件概率本质山就是由事件的计算得到的。我的理解是,随机变量是数值转换后的条件概率,如果给定了数值,两者是等价的。但是随机变量是随机的,是动的,因此会存在条件概率分布等东东。所以两者还是不同的,依然是一静一动。

 

2.关于协方差

协方差是描述多个随机变量之间的关系的。如果两个随机变量是相互独立的,那他们的协方差或者相关系数是0,反之不成立。

考虑我们有m个样本,每个样本的特征数是n。那么我们可以将n个特征看成n个随机变量。每个随机变量都有m的实数值作为它的观测值,因此我们可以计算得到均值,方差。进而可以算出两两特征之间的协方差的。而这些协方差就够成了整个样本集的协方差矩阵。协方差矩阵很有用,特别是用在高斯分布的模型中的时候。

未完,待续。

 

跟着vamei复习概率论

标签:

原文地址:http://www.cnblogs.com/chybot/p/4657733.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!