标签:
查找效率最高即平均查找长度最小,根据前面所学知识,我们可以给出有序表在非等概率情况下应遵循的两个原则:
1、最先访问的结点应是访问概率最大的结点;
2、每次访问应使结点两边尚未访问的结点的被访概率之和尽可能相等。
这两个原则可用一句话来表示,即判定树为带权内路径长度之和最小的二叉树,亦即:PH = ∑wihi 最小,其中 n 为有序表长度,hi 为第 i 个结点在判定树上的层次数,wi = cpi,c 为某个常数,pi 为第 i 个结点的查找概率。
这样的树称为静态最优查找树(static optimal search tree),构造这样一棵树的时间代价太大,亦即时间复杂度很大,因此我们通常是构造次优查找树(nearly optimal search tree),构造它的时间代价远远低于构造最优查找树,但查找性能只比最优查找树差1%~2%,很少差3%以上。
次优查找树的构造:
设有序表每个记录的权值为 wl,wl+1,…,wh,第一个应访问的结点号为 i ,则有:
Δpi = ∑wj - ∑wj 最小,即 Δpi = Min {Δpj }
再分别对 {rl,rl+1,…,ri-1} 和 {ri+1,ri+2,…,rh} 分别构造次优查找树。
为便于计算,引入累计权值swi=∑wj,并设wl-1=swl-1=0,则:
由于在构造次优查找树时没有考虑前面说的原则一,因此被选为根的结点的权值可能比其邻近结点的权值小,此时应对查找树作适当的调整,将相邻权值大的结点作为根结点。
次优查找树的查找方法与折半查找类似,其平均查找长度与 log n 成正比。
注意:利用上述算法构造好次优二叉树之后,可能并不是最优的,因为在构造过程中,没有考虑单个关键字的相应权值,则有可能出现被选为根的关键字的权值比与
它相邻的关键字的权值小。此时应做适当的调整:选取邻近的权值较大的关键字作为次优查找树的根节点(也就是左旋和右旋子树#include<iostream>
#include<cstring> #include<cstdio> #include<algorithm> #include<string> #include<cmath> #define N 100 #define MAXN 0x3f3f3f3f using namespace std; template<typename T> class TreeNode{ public: TreeNode* child[2]; T val; int w; TreeNode(){ child[0] = child[1] = NULL; } }; template<typename T> class NearlyOptimalSearchTree{//次优查找树 public: int n; T val[N]; int w[N]; int sw[N]; TreeNode<T> *t; void input(); void init(); void outT(TreeNode<T>* t); private: void buildT(int ld, int rd, TreeNode<T>* &t);//建立次优查找树 void adjustment(TreeNode<T>* &t);//调整次优查找树 void rotateT(TreeNode<T>* &t, int x); }; template<typename T> void NearlyOptimalSearchTree<T>::input(){ cin>>n; for(int i=1; i<=n; ++i) cin>>val[i]>>w[i]; } template<typename T> void NearlyOptimalSearchTree<T>::init(){ sw[0] = 0; for(int i=1; i<=n; ++i) sw[i] = sw[i-1]+w[i]; buildT(1, n, t); cout<<"没有调整前的先序遍历:"<<endl; outT(t); adjustment(t); cout<<endl<<"调整后的先序遍历:"<<endl; outT(t); cout<<endl; } template<typename T> void NearlyOptimalSearchTree<T>::buildT(int ld, int rd, TreeNode<T>* &t){ if(ld > rd) return; int minN = MAXN; int i; for(int j=ld; j<=rd; ++j){ int ans = sw[rd] - sw[j-1] - sw[j]; ans = abs(ans); if(minN > ans){ minN = ans; i = j; } } t = new TreeNode<T>; t->val = val[i]; t->w = w[i]; if(ld==rd) return; buildT(ld, i-1, t->child[0]); buildT(i+1, rd, t->child[1]); } template<typename T> void NearlyOptimalSearchTree<T>::adjustment(TreeNode<T>* &t){ if(!t) return; int lmax = 0, rmax = 0; if(t->child[0]) lmax = t->child[0]->w; if(t->child[1]) rmax = t->child[1]->w; int maxVal = max(lmax, rmax); if(t->w < maxVal){ if(maxVal == lmax){ rotateT(t, 1);//右旋子树 } else { rotateT(t, 0);//左旋子树 } } adjustment(t->child[0]); adjustment(t->child[1]); } template<typename T> void NearlyOptimalSearchTree<T>::rotateT(TreeNode<T>* &o, int x){ TreeNode<T>* k = o->child[x^1]; o->child[x^1] = k->child[x]; k->child[x] = o; o = k; } template<typename T> void NearlyOptimalSearchTree<T>::outT(TreeNode<T>* t){ if(!t) return; cout<<t->val<<" "; outT(t->child[0]); outT(t->child[1]); } int main(){ NearlyOptimalSearchTree<string> nost; nost.input(); nost.init(); return 0; }
/*
演示结果如下:
9
A 1
B 1
C 2
D 5
E 3
F 4
G 4
H 3
I 5
没有调整前的先序遍历:
F D B A C E G H I
调整后的先序遍历:
D C B A F E G I H
5
A 1
B 30
C 2
D 29
E 2
没有调整前的先序遍历:
C B A D E
调整后的先序遍历:
B A D C E
*/
标签:
原文地址:http://www.cnblogs.com/hujunzheng/p/4657858.html