标签:
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路分析:基本思路是用两个数组left和right,left保存从最左侧到当前数之前的所有数字的乘积,right保存从最右侧到当前之后的所有数字的乘积,然后,结果数组就是把这两个数组对应位置相乘即可。如果想只是用O(1)的space,就需要复用输入和输出数组的空间,基本思路是,先计算right数组,利用result数组的空间保存,然后计算left数组,只需要一个变量left保存当前从最左侧到当前数字之前的所有数字之和。总之,使用好输入输出数组的空间,避免使用更多space。以下注释部分code给出了O(n) 空间复杂度的解法,非注释部分给出了O(1)空间复杂度的解法。时间复杂度就是O(n)。
AC Code:
public class Solution {
public int[] productExceptSelf(int[] nums) {
/*int len = nums.length;
int [] res = new int[len];
if(len < 2) return res;
int [] left = new int[len];
int [] right = new int[len];
left[0] = 1;
right[len - 1] = 1;
for(int i = len - 1; i > 0; i--){
right[i - 1] = right[i] * nums[i];
}
for(int i = 0; i < len - 1; i++){
left[i + 1] = left[i] * nums[i];
}
for(int i = 0; i < len; i++){
res[i] = left[i] * right[i];
}
return res;*/
int len = nums.length;
int [] res = new int[len];
if(len < 2) return res;
res[len - 1] = 1;
for(int i = len - 1; i > 0; i--){
res[i - 1] = res[i] * nums[i];
}
int left = 1;
for(int i = 0; i < len; i++){
res[i] *= left;
left = left * nums[i];
}
return res;
}
}版权声明:本文为博主原创文章,未经博主允许不得转载。
LeetCode Product of Array Except Self
标签:
原文地址:http://blog.csdn.net/yangliuy/article/details/46954779