标签:
Alex love Number theory. Today he think a easy problem, Give you number N and L, To calculate N^1 + N^2 + N^3 + ... + N^L, And ans will mod 1e9+7
Many test of input(about 10W case), each input contains number N and L, 1 <= N, L <= 2147483647
Contains a number with your answer
2 5
3 5
10 10
62 363 111111033
discuss:1e9+7,数好大有木有,2147483647的2147483647是多少~
point:快速幂
#include<iostream> #include<cstring> #include<cstring> #include<cstdio> using namespace std; const int MOD = 1000000007; // 宏定义也行 typedef long long ll; // __int64也行 ll pow_mod(ll x, ll k) // 快速幂函数 { ll ans = 1; if(k == 1) return x; while(k) { if(k&1) ans = (ans * x) % MOD;
x = (x * x) % MOD; k >>= 1; // k /= 2 } return ans;
// (n*n*n*n*n)%Mod = (( ((n*n)%Mod) *((n*n)%Mod) ) % Mod) * (n % Mod) ,记住就行了~至于为什么,目前我还不知道 } ll magic(ll n, ll l) { if(l == 1) return n; ll tmp = magic(n, l/2); // 递归,二分,先求l部分的前一半项 ll ste = (tmp + (pow_mod(n, l/2) * tmp )% MOD) % MOD; // n+n*n+n*n*n+n*n*n*n = n+n*n + (n+n*n) * n * n(L个 if(l&1) ste = (ste + (pow_mod(n, l) % MOD)) % MOD; // 如果l是奇数,加上最后一项,即n的l次方 return ste; // 返回当前l项的结果 } int main() { ll n, l; while(~scanf("%lld%lld", &n, &l)) { printf("%lld\n", magic(n, l)); } return 0; }
标签:
原文地址:http://www.cnblogs.com/Tinamei/p/4663327.html