标签:
(I)直线篇
1 直线是如何表示的?
对于平面中的一条直线,在笛卡尔坐标系中,常见的有点斜式,两点式两种表示方法。然而在hough变换中,考虑的是另外一种表示方式:使用(r,theta)来表示一条直线。其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示。
在实际的直线检测情况中,如果超过一定数目的点拥有相同的(r,theta)坐标,那么就可以判定此处有一条直线。在r0theta 坐标系图中,明显的交汇点就标示一条检测出的直线。
如下图,可以判定出平面上的点共构成了两条直线,即检测出两条直线。
继使用hough变换检测出直线之后,顺着坐标变换的思路,提出了一种检测圆的方法。
1 如何表示一个圆?
与使用(r,theta)来表示一条直线相似,使用(a,b,r)来确定一个圆心为(a,b)半径为 r 的圆。
2 如何表示过某个点的所有圆?
某个圆过点(x1,y1),则有:(x1-a1)^2 + (y1-b1)^2 = r1^2 。
那么过点(x1,y1)的所有圆可以表示为(a1(i),b1(i),r1(i)),其中r1∈(0,无穷),每一个 i 值都对应一个不同的圆,(a1(i),b1(i),r1(i))表示了无穷多个过点(x1,y1)的圆。
3 如何确定多个点在同一个圆上?
如(2)中说明,过点(x1,y1)的所有圆可以表示为(a1(i),b1(i),r1(i)),过点(x2,y2)的所有圆可以表示为(a2(i),b2(i),r2(i)),过点(x3,y3)的所有圆可以表示为(a3(i),b3(i),r3(i)),如果这三个点在同一个圆上,那么存在一个值(a0,b0,r0),使得 a0 = a1(k)=a2(k)=a3(k) 且b0 = b1(k)=b2(k)=b3(k) 且r0 = r1(k)=r2(k)=r3(k),即这三个点同时在圆(a0,b0,r0)上。
从下图可以形象的看出:
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/qq_26898461/article/details/46983589