标签:
http://acm.hdu.edu.cn/showproblem.php?pid=5294
8 9 1 2 2 2 3 2 2 4 1 3 5 3 4 5 4 5 8 1 1 6 2 6 7 5 7 8 1
2 6
/**
hdu5294 最短路+最大流
题目大意:给定一个无向图,从起点到终点,只有走最短路,才能在规定时限内到达,问最少去掉几条边使不能到达,最多去掉几条边仍能到达
解题思路:http://blog.sina.com.cn/s/blog_15139f1a10102vnx5.html 和官方题解想的一样
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
const int oo=1e9;
const int mm=161111;
const int mn=2330;
int node,src,dest,edge;
int ver[mm],flow[mm],_next[mm];
int head[mn],work[mn],dis[mn],q[mn];
void prepare(int _node,int _src,int _dest)
{
node=_node,src=_src,dest=_dest;
for(int i=0; i<=node; ++i)head[i]=-1;
edge=0;
}
void addedge(int u,int v,int c)
{
ver[edge]=v,flow[edge]=c,_next[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,_next[edge]=head[v],head[v]=edge++;
}
bool Dinic_bfs()
{
int i,u,v,l,r=0;
for(i=0; i<node; ++i)dis[i]=-1;
dis[q[r++]=src]=0;
for(l=0; l<r; ++l)
for(i=head[u=q[l]]; i>=0; i=_next[i])
if(flow[i]&&dis[v=ver[i]]<0)
{
dis[q[r++]=v]=dis[u]+1;
if(v==dest)return 1;
}
return 0;
}
int Dinic_dfs(int u,int exp)
{
if(u==dest)return exp;
for(int &i=work[u],v,tmp; i>=0; i=_next[i])
if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
{
flow[i]-=tmp;
flow[i^1]+=tmp;
return tmp;
}
return 0;
}
int Dinic_flow()
{
int i,ret=0,delta;
while(Dinic_bfs())
{
for(i=0; i<node; ++i)work[i]=head[i];
while(delta=Dinic_dfs(src,oo))ret+=delta;
}
return ret;
}
///==================================================
const int INF=0x3f3f3f3f;
const int maxm=511111;
const int maxn=2111;
struct EdgeNode
{
int to;
int w;
int next;
};
EdgeNode edges[maxm];
int N,M;
int head1[maxn],edge1;
bool vis[maxn];
queue <int> que;
int dis1[maxn],dis2[maxn];
void addedge1(int u,int v,int c)
{
edges[edge1].w=c,edges[edge1].to=v,edges[edge1].next=head1[u],head1[u]=edge1++;
}
void init()
{
memset(head1,-1,sizeof(head1));
edge1=0;
}
void spfa(int s,int n)//单源最短路(s为起点,n为节点总数)
{
int u;
for (int i=0; i<=n; i++)
dis1[i]=INF;
memset(vis,0,sizeof(vis));
while (!que.empty()) que.pop();
que.push(s);
vis[s]=true;
dis1[s]=0;
while (!que.empty())
{
u=que.front();
que.pop();
vis[u]=false;
for (int i=head1[u]; i!=-1; i=edges[i].next)
{
int v=edges[i].to;
int w=edges[i].w;
if (dis1[v]>dis1[u]+w)
{
dis1[v]=dis1[u]+w;
if (!vis[v])
{
vis[v]=true;
que.push(v);
}
}
}
}
}
////========================================
int aa[60080][3],bb[60080][3];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&aa[i][0],&aa[i][1],&aa[i][2]);
addedge1(aa[i][0],aa[i][1],aa[i][2]);
addedge1(aa[i][1],aa[i][0],aa[i][2]);
}
spfa(1,n);
memcpy(dis2,dis1,sizeof(dis1));
//printf("dis2->%d\n",dis2[n]);
spfa(n,n);
// printf("dis1->%d\n",dis1[1]);
int k=0;
for(int i=0;i<m;i++)
{
if(dis2[aa[i][0]]>dis2[aa[i][1]])
swap(aa[i][0],aa[i][1]);
// printf("n-%d:%d-1 %d %d %d\n",aa[i][1],aa[i][0],dis1[aa[i][1]],aa[i][2],dis2[aa[i][0]]);
if(dis1[aa[i][1]]+aa[i][2]+dis2[aa[i][0]]==dis2[n])
{
bb[k][0]=aa[i][0];
bb[k++][1]=aa[i][1];
// printf("%d %d\n",bb[k-1][0],bb[k-1][1]);
}
}
prepare(n+1,1,n);
for(int i=0;i<k;i++)
{
addedge(bb[i][0],bb[i][1],1);
}
int ans1=Dinic_flow();
init();
for(int i=0;i<k;i++)
{
addedge1(bb[i][0],bb[i][1],1);
addedge1(bb[i][1],bb[i][0],1);
}
spfa(1,n);
//printf("%d\n",dis2[n]);
int ans2=m-dis1[n];
printf("%d %d\n",ans1,ans2);
}
return 0;
}8 9 1 2 2 2 3 2 2 4 1 3 5 3 4 5 4 5 8 1 1 6 2 6 7 5 7 8 1
2 6
版权声明:本文为博主原创文章,未经博主允许不得转载。
hdu5294||2015多校联合第一场1007 最短路+最大流
标签:
原文地址:http://blog.csdn.net/lvshubao1314/article/details/46992109