标签:memorydatalayer 深度学习 caffe 内存中加载数据
最近在搞caffe的应用,因为很多时候我们需要进行服务器来进行特征的抽取,所以我们需要很将单张图片丢入caffe的网络进行一次传递,这样就诞生了一个从内存中如何加载数据进入caffe的需求,这里我直接贴出代码来先:
#include <boost/make_shared.hpp> // these need to be included after boost on OS X #include <string> // NOLINT(build/include_order) #include <vector> // NOLINT(build/include_order) #include <fstream> // NOLINT #include "caffe/caffe.hpp" #include <opencv.hpp> static void CheckFile(const std::string& filename) { std::ifstream f(filename.c_str()); if (!f.good()) { f.close(); throw std::runtime_error("Could not open file " + filename); } f.close(); } template <typename Dtype> caffe::Net<Dtype>* Net_Init_Load( std::string param_file, std::string pretrained_param_file, caffe::Phase phase) { CheckFile(param_file); CheckFile(pretrained_param_file); caffe::Net<Dtype>* net(new caffe::Net<Dtype>(param_file,phase)); net->CopyTrainedLayersFrom(pretrained_param_file,0); return net; } #define NetF float int main() { cv::Mat src1; src1 = cv::imread("test.png"); cv::Mat rszimage; //// The mean file image size is 256x256, need to resize the input image to 256x256 cv::resize(src1, rszimage, cv::Size(227, 227)); std::vector<cv::Mat> dv = { rszimage }; // image is a cv::Mat, as I'm using #1416 std::vector<int> dvl = { 0 }; caffe::Datum data; caffe::ReadFileToDatum("D:/work/DestImage/crop/CH0005-00-0019/00028.png", &data); caffe::Net<NetF>* _net = Net_Init_Load<NetF>("deploy_Test.prototxt", "bvlc_alexnet.caffemodel", caffe::TEST); caffe::MemoryDataLayer<NetF> *m_layer_ = (caffe::MemoryDataLayer<NetF> *)_net->layers()[0].get(); m_layer_->AddMatVector(dv, dvl); /*float loss = 0.0; std::vector<caffe::Blob<float>*> results = _net->ForwardPrefilled(&loss);*/ int end_ind = _net->layers().size(); std::vector<caffe::Blob<NetF>*> input_vec; _net->Forward(input_vec); boost::shared_ptr<caffe::Blob<NetF>> outPool5 = _net->blob_by_name("pool5"); std::cout << outPool5->shape()[0] << std::endl; std::cout << outPool5->shape()[1] << std::endl; std::cout << outPool5->shape()[2] << std::endl; std::cout << outPool5->shape()[3] << std::endl; std::cout << outPool5->num() << std::endl; std::cout << outPool5->channels() << std::endl; std::cout << outPool5->width() << std::endl; std::cout << outPool5->height() << std::endl; std::cout << outPool5->data_at(0, 0, 0, 0) << std::endl; std::cout << outPool5->data_at(0, 0, 1, 1) << std::endl; std::cout << outPool5->data_at(0, 95, 5, 5) << std::endl; const NetF* pstart = outPool5->cpu_data(); std::cout << m_layer_->width() << std::endl; return 0; }
然后是配置文件:
name: "CaffeNet" layers { name: "data" type: MEMORY_DATA top: "data" top: "label" memory_data_param { batch_size: 1 channels: 3 height: 227 width: 227 } transform_param { crop_size: 227 mirror: false #mean_file:"imagenet_mean.binaryproto" mean_value: 104 mean_value: 117 mean_value: 123 } } layers { name: "`" type: CONVOLUTION bottom: "data" top: "conv1" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 96 kernel_size: 11 stride: 4 } } layers { name: "relu1" type: RELU bottom: "conv1" top: "conv1" } layers { name: "pool1" type: POOLING bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { name: "norm1" type: LRN bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layers { name: "conv2" type: CONVOLUTION bottom: "norm1" top: "conv2" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 } } layers { name: "relu2" type: RELU bottom: "conv2" top: "conv2" } layers { name: "pool2" type: POOLING bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { name: "norm2" type: LRN bottom: "pool2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layers { name: "conv3" type: CONVOLUTION bottom: "norm2" top: "conv3" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 384 pad: 1 kernel_size: 3 } } layers { name: "relu3" type: RELU bottom: "conv3" top: "conv3" } layers { name: "conv4" type: CONVOLUTION bottom: "conv3" top: "conv4" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 } } layers { name: "relu4" type: RELU bottom: "conv4" top: "conv4" } layers { name: "conv5" type: CONVOLUTION bottom: "conv4" top: "conv5" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 } } layers { name: "relu5" type: RELU bottom: "conv5" top: "conv5" } layers { name: "pool5" type: POOLING bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { name: "fc6" type: INNER_PRODUCT bottom: "pool5" top: "fc6" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 inner_product_param { num_output: 4096 } } layers { name: "relu6" type: RELU bottom: "fc6" top: "fc6" } layers { name: "drop6" type: DROPOUT bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layers { name: "fc7" type: INNER_PRODUCT bottom: "fc6" top: "fc7" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 inner_product_param { num_output: 4096 } } layers { name: "relu7" type: RELU bottom: "fc7" top: "fc7" } layers { name: "drop7" type: DROPOUT bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layers { name: "fc8" type: INNER_PRODUCT bottom: "fc7" top: "fc8" blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 inner_product_param { num_output: 1000 } } layers { name: "prob" type: SOFTMAX bottom: "fc8" top: "prob" } layers { name: "output" type: ARGMAX bottom: "prob" top: "output" }
我的模型使用的是alexnet,例子是用来抽取一个图片在pool5那一层的特征。这样大家使用这个例子可以利用caffe的任意模型抽取任意图片的特征。
版权声明:本文为博主原创文章,未经博主允许不得转载。
caffe使用MemoryDataLayer从内存中加载数据
标签:memorydatalayer 深度学习 caffe 内存中加载数据
原文地址:http://blog.csdn.net/cparent/article/details/47008485