标签:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { //空间复杂度为O(n),n为三角形的层数,时间复杂度为O(K),K为整个三角形中数字的个数 //从底向上计算,动态规划,题意是只能取相邻的,因此状态转移方程可以求得 int n=triangle.size(); int dp[]=new int[n]; for(int i=n-1;i>=0;i--){ for(int j=0;j<=i;j++){ if(i==n-1){ dp[j]=triangle.get(i).get(j); }else{ dp[j]=Math.min(dp[j],dp[j+1])+triangle.get(i).get(j); } } } return dp[0]; } }
标签:
原文地址:http://www.cnblogs.com/qiaomu/p/4668925.html