标签:
题意是这样,给出很多圆,要么两两相离,要么包含,若删掉一个圆,那被他包含的都要删除,若某人没有圆给他删,那么他就赢了。
。。。知道树上博弈的话,就很简单。。。不知道的话,这确实是个神题……
按半径上升排序,从左往右扫,i扫到第一个j可以包含它的圆,建立j到i的连边,然后break
这样就建立好了一棵树,之后知道这个就很简单了。。。
树的删边游戏
规则如下:
给出一个有 N 个点的树,有一个点作为树的根节点。
游戏者轮流从树中删去边,删去一条边后,不与根节点相连的
部分将被移走。
谁无路可走谁输。
我们有如下定理:
[定理]
叶子节点的 SG 值为 0;
中间节点的 SG 值为它的所有子节点的 SG 值加 1 后的异或和。
当然啦,像我这样暴力的写法,交c++会超时#include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<iostream> #include<algorithm> #include<bitset> #include<climits> #include<list> #include<iomanip> #include<stack> #include<set> using namespace std; typedef long long ll; struct Point { int x,y,r; }point[20010]; bool cmp(Point a,Point b) { return a.r<b.r; } struct Edge { int to,next; }edge[20010]; int head[20010],tail; void add(int from,int to) { edge[tail].to=to; edge[tail].next=head[from]; head[from]=tail++; } int dfs(int from) { int ans=0; for(int i=head[from];i!=-1;i=edge[i].next) ans^=dfs(edge[i].to)+1; return ans; } int main() { int T; scanf("%d",&T); while(T--) { int n; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].r); sort(point,point+n,cmp); tail=0; memset(head,-1,sizeof(head)); for(int i=0;i<n;i++) { bool flag=0; for(int j=i+1;j<n;j++) if(ll(point[j].r*point[j].r)>ll(point[i].x-point[j].x)*(point[i].x-point[j].x)+(point[i].y-point[j].y)*(point[i].y-point[j].y)) { flag=1; add(j,i); break; } if(!flag) add(n,i); } if(dfs(n)!=0) puts("Alice"); else puts("Bob"); } }
2 1 0 0 1 6 -100 0 90 -50 0 1 -20 0 1 100 0 90 47 0 1 23 0 1
Alice Bob
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/stl112514/article/details/47016463