标签:
Example1:
给出下面的一个图:(来自Mackey的书)
问:大树背后有多少个箱子?
其实,答案肯定是有很多的,一个,两个,乃至N箱子都是有可能的(比如说后面有一连排的箱子,排成一条直线),我们只能看到第一个:
但是,最正确,也是最合理的解释,就是一个箱子,因为如果大树背后有两个乃至多个箱子,为什么从大树正面看起来,两边的高度一样,颜色也一样,这样是不是太巧合了。如果我们的模型根据这张图片,告诉我们大树背后最有可能有两个箱子,这样的模型的泛化能力是不是太差了。
不能过拟合的原因:
观测数据总是会有各种各样的误差,比如观测误差(比如你观测的时候一个 MM 经过你一不留神,手一抖就是一个误差出现了),所以如果过分去寻求能够完美解释观测数据的模型,就会落入所谓的数据过配(overfitting)的境地,一个过配的模型试图连误差(噪音)都去解释(而实际上噪音又是不需要解释的),显然就过犹不及了。
过分匹配的另一个原因在于当观测的结果并不是因为误差而显得“不精确”而是因为真实世界中对数据的结果产生贡献的因素太多太多,跟噪音不同,这些偏差是一些另外的因素集体贡献的结果,不是你的模型所能解释的——噪音那是不需要解释——一个现实的模型往往只提取出几个与结果相关度很高,很重要的因素(cause)
标签:
原文地址:http://www.cnblogs.com/xiangzhi/p/4670508.html