码迷,mamicode.com
首页 > 其他好文 > 详细

Mondriaan's Dream(POJ 2411状态压缩dp)

时间:2015-07-24 16:06:44      阅读:91      评论:0      收藏:0      [点我收藏+]

标签:

题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 

 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放成功。状态转移时,枚举每一行可能的状态上一行取反得下一行能放的状态。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll  INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod =  1000000007;
int n,m;
ll dp[15][1<<11],x;
//枚举可能的状态
void dfs(int i,int j,int p){
    if(p==m){
        dp[i][j]+=x;
        return;
    }
    dfs(i,j,p+1);
    if(p+2<=m&&!(j&(1<<p))&&!(j&(1<<(p+1))))
    dfs(i,(j|(1<<p)|(1<<(p+1))),p+2);
}
void solve(){
    memset(dp,0,sizeof(dp));
    x=1;
    dfs(1,0,0);
    ll cas=(1<<m);
//x为上一行可能的方案总数
    for(int i=2;i<=n;++i){
        for(int j=0;j<cas;++j){
            if(dp[i-1][j]){
            x=dp[i-1][j];
            dfs(i,~j&(cas-1),0);
            }
        }
    }
    printf("%I64d\n",dp[n][cas-1]);
}
int main()
{
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0)break;
        solve();
    }
return 0;
}

  

Mondriaan's Dream(POJ 2411状态压缩dp)

标签:

原文地址:http://www.cnblogs.com/zsf123/p/4673562.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!