标签:dp
7. 369 numbers
A number is said to be a 369 number if
For Example 12369, 383676989, 396 all are 369 numbers whereas 213, 342143, 111 are not.
Given A and B find how many 369 numbers are there in the interval [A, B]. Print the answer modulo 1000000007.
Input
The first line contains the number of test cases (T) followed by T lines each containing 2 integers A and B.
Output
For each test case output the number of 369 numbers between A and B inclusive.
Constraints
T<=100
1<=A<=B<=10^50
Sample Input
3
121 4325
432 4356
4234 4325667
Sample Output
60
58
207159
链接:http://www.spoj.com/problems/NUMTSN/en/
/* 题意:求一段区间3 6 9 数目相同(且最少为1)的数的数目, 思路:注意到数非常大,有10^50次幂,所以用字符串保存 然后数位dp dp[i][j][k][m]分别代表到第i位,3 6 9 的数目 */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #include<set> #include<map> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) #define bug printf("hihi\n") #define eps 1e-8 typedef long long ll; using namespace std; #define N 55 #define mod 1000000007 ll dp[N][N][N][N]; // int bit[N]; void change(char *a) //处理对于字符串减一操作 { int i,j; int len=strlen(a); len--; while(len>=0) { a[len]--; if(a[len]>='0') break; a[len]='9'; len--; } len=strlen(a); for(i=0;i<len-1;i++) if(a[i]>='1') break; int k=0; for(i;i<len;i++) a[k++]=a[i]; a[k]='\0'; } ll dfs(int pos,int le,int mid,int ri,bool bound) { if(pos==0) return le==mid&&mid==ri&&le>=1 ? 1:0; if(!bound&&dp[pos][le][mid][ri]>=0) return dp[pos][le][mid][ri]; int up=bound ? bit[pos]:9; ll ans=0; for(int i=0;i<=up;i++) { if(i==3) ans=(ans+dfs(pos-1,le+1,mid,ri,bound&&i==up))%mod; else if(i==6) ans=(ans+dfs(pos-1,le,mid+1,ri,bound&&i==up))%mod; else if(i==9) ans=(ans+dfs(pos-1,le,mid,ri+1,bound&&i==up))%mod; else ans=(ans+dfs(pos-1,le,mid,ri,bound&&i==up))%mod; } if(!bound) dp[pos][le][mid][ri]=ans; return ans; } ll solve(char *c) { int i,j; int len=strlen(c); for(i=1;i<=len;i++) bit[i]=c[len-i]-'0'; return dfs(len,0,0,0,true)%mod; } int main() { int i,j,t; char a[N],b[N]; memset(dp,-1,sizeof(dp)); scanf("%d",&t); while(t--) { scanf("%s%s",a,b); change(a); printf("%lld\n",(solve(b)-solve(a)+mod+mod)%mod);//必须+mod % mod 因为可能是负数 } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
SPOJ NUMTSN NUMTSN - 369 Numbers(数位dp)
标签:dp
原文地址:http://blog.csdn.net/u014737310/article/details/47041889