标签:
通道:http://acm.hdu.edu.cn/showproblem.php?pid=4609
题意:n条边长,求任选3条能组成三角形的概率。
思路:求出res后,减去一大一下,减去都大于它的边,减去该边和其他边组成的方案。
代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <algorithm> 5 6 const int N =400007; 7 8 typedef long long ll; 9 10 struct comp { 11 double x, y; 12 comp(double _x=0, double _y=0) : x(_x), y(_y) {} 13 }; 14 15 namespace FFT { 16 const double pi2 = acos(-1.) * 2; 17 comp a[N], b[N], tmp[N]; 18 int n, bn; 19 ll res[N]; 20 inline comp W(int n, bool inv) { 21 double ang = inv ? -pi2 / n : pi2 / n; 22 return comp(cos(ang), sin(ang)); 23 } 24 int bitrev(int x) { 25 int ans = 0; 26 for (int i=1; i<=bn; ++i) 27 ans <<= 1, ans |= x & 1, x >>= 1; 28 return ans; 29 } 30 void dft(comp *a,bool inv) { 31 int step, to; comp w, wi, A, B; 32 for (int i=0; i<n; ++i) { 33 to = bitrev(i); 34 if (to > i) std::swap(a[to], a[i]); 35 } 36 for (int i=1; i<=bn; ++i) { 37 wi = W(1<<i, inv); w = comp(1, 0); 38 step = 1 << (i-1); 39 for (int k=0; k<step; ++k) { 40 for (int j=0; j<n; j+=1<<i) { 41 int t = j | k, d = j|k|step; 42 A = a[t]; 43 B.x = w.x * a[d].x - w.y * a[d].y; 44 B.y = w.x * a[d].y + w.y * a[d].x; 45 a[t].x = A.x + B.x, a[t].y = A.y + B.y; 46 a[d].x = A.x - B.x, a[d].y = A.y - B.y; 47 } 48 comp tmp; 49 tmp.x = w.x * wi.x - w.y * wi.y; 50 tmp.y = w.x * wi.y + w.y * wi.x; 51 w = tmp; 52 } 53 } 54 } 55 int mul(int n1, int *x1, int n2, int *x2) { 56 n = std::max(n1, n2); 57 for (bn = 0; (1<<bn) < n; ++bn); ++bn; 58 n = 1 << bn; 59 for (int i=0; i<n; ++i) a[i] = b[i] = comp(0, 0); 60 for (int i=0; i<n1; ++i) a[i] = comp(x1[i], 0); 61 for (int i=0; i<n2; ++i) b[i] = comp(x2[i], 0); 62 dft(a, false); dft(b, false); 63 for (int i=0; i<n; ++i) { 64 tmp[i].x = a[i].x * b[i].x - a[i].y * b[i].y; 65 tmp[i].y = a[i].x * b[i].y + a[i].y * b[i].x; 66 } 67 dft(tmp, true); 68 for (int i=0; i<n; ++i) res[i] = (ll)(tmp[i].x/n + 0.1); 69 for (--n; n && !res[n]; --n); 70 return n+1; 71 } 72 }; 73 74 int n; 75 int a[N], num[N]; 76 ll sum[N]; 77 78 int main() { 79 int T; 80 scanf("%d", &T); 81 while (T-- > 0) { 82 scanf("%d", &n); 83 int up = 0; 84 for (int i = 0; i < n; ++i) scanf("%d", &a[i]), up = std::max(up, a[i]); 85 memset(num, 0, sizeof num); 86 for (int i = 0; i < n; ++i) ++num[a[i]]; 87 int len = FFT::mul(up + 1, num, up + 1, num); 88 for (int i = 0; i < n; ++i) { 89 --FFT::res[a[i] + a[i]]; 90 } 91 for (int i = 0; i < len; ++i) { 92 FFT::res[i] >>= 1; 93 } 94 sum[0] = FFT::res[0]; 95 for (int i = 1; i < len; ++i) { 96 sum[i] = sum[i - 1] + FFT::res[i]; 97 } 98 ll ans = 0; 99 for (int i = 0; i < n; ++i) { 100 ans += sum[len - 1] - sum[a[i]]; 101 ans -= n - 1, ans -= (ll) i * (n - 1 - i); 102 ans -= (ll) (n - 1 - i) * (n - 2 - i) / 2; 103 } 104 ll tot = (ll) n * (n - 1) * (n - 2) / 6; 105 printf("%.7f\n", 1. * ans / tot); 106 } 107 return 0; 108 }
标签:
原文地址:http://www.cnblogs.com/Rojo/p/4673745.html