标签:
1 5 10 1 2 3 4 5 5 4 3 2 1
14
给定容量V的背包 每一块骨头的体积和价值固定 之后求背包能装下的最大价值和
01背包问题就是 一次性使用骨头 方法常见的有二维数组和一维数组 一维数组是二维数组再空间上的优化 循环数组优化
先解释下二维数组的方法 状态转移方程是
dp[i][v] = max(dp[i-1][v], dp[i-1][v-c[i]]+w[i])
将前i件物品放入容量为v的背包中 是子问题 若只考虑第i件物品的策略(放或不放)那么就可以转化为一个只牵扯前i-1件物品的问题
实现代码如下
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1010; int va[maxn], vo[maxn]; int dp[maxn][maxn]; int n, v; int res; int main(){ int t; scanf("%d", &t); while(t--){ scanf("%d%d", &n, &v); for(int i = 1; i <= n; ++i){ scanf("%d", &va[i]); } for(int i = 1; i <= n; ++i){ scanf("%d", &vo[i]); } memset(dp, 0, sizeof(dp)); for(int i = 1; i <= n; ++i){ for(int j = 0; j <= v; ++j){ if(vo[i] <= j) dp[i][j] = max(dp[i-1][j], dp[i-1][j-vo[i]]+va[i]); else dp[i][j]=dp[i-1][j]; } } printf("%d\n", dp[n][v]); } return 0; }
for i <- 1 to N
do for v <- V to 0
do dp[v] = max(dp[v], dp[v-c[i]]+w[i])
这里因为用到了滚动数组的感觉 所以第二重循环要逆序 这样才能保证每一次dp的更新是从上一层i-1更新得到
代码实现如下
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 1010; int va[maxn], vo[maxn]; int dp[maxn]; int n, v; int res; int main(){ int t; scanf("%d", &t); while(t--){ scanf("%d%d", &n, &v); for(int i = 0; i < n; ++i){ scanf("%d", &va[i]); } for(int i = 0; i < n; ++i){ scanf("%d", &vo[i]); } memset(dp, 0, sizeof(dp)); for(int i = 0; i < n; ++i){ for(int j = v; j >= vo[i]; --j){ dp[j] = max(dp[j], dp[j-vo[i]] + va[i]); } } printf("%d\n", dp[v]); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/u012431590/article/details/47044771