Time Limit: 3500MS | Memory Limit: 65536K | |
Total Submissions: 17423 | Accepted: 6614 |
Description
Input
Output
Sample Input
4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0
Sample Output
1 6 1
给一个平面散点集,判断能够构成多少个正方形。虽然有3.5秒,但四层暴力循环的话肯定会超时循环。所以有这样一种思路:先把点排序,双层循环枚举前(n-2)个点,为了防止重复判断,第二层循环里的j要从i+1开始,二分查找后(n-j)个点中是否存在能与s[i],s[j]构成正方形的点,所以第二层循环结束的条件是j<=n-2,剩下2个点用来查找,二分查找的范围是[j+1,n]。
已知2个点,写出能与这2个点构成正方形的坐标的计算方法如下图(计算坐标的时候不要用double,否则很容易TLE或者WA)
#include<cstdio> #include<iostream> #include<algorithm> using namespace std; const int MAXN=1e5+20; int n; long long ans; struct star { int x,y; star(){} star(int x,int y) { this->x=x; this->y=y; } bool operator<(const star& n)const { if(this->x==n.x) return this->y<n.y; return this->x<n.x; } }s[MAXN]; int searchh(int l,int r,star n) { while(l<=r) { int mid=(l+r)/2; if(s[mid].x==n.x&&s[mid].y==n.y) return 1; if(s[mid]<n) l=mid+1; else r=mid-1; } return 0; } int main() { #ifndef ONLINE_JUDGE freopen("in.txt","r",stdin); #endif // ONLINE_JUDGE while(scanf("%d",&n)!=EOF&&n) { ans=0; for(int i=1;i<=n;i++) scanf("%d%d",&s[i].x,&s[i].y); sort(s+1,s+n+1); for(int i=1;i<=n-3;i++) { for(int j=i+1;j<=n-2;j++) { int xxx=s[j].x-s[i].x; int yyy=s[j].y-s[i].y; int sx1=s[i].x+yyy; int sy1=s[i].y-xxx; int sx2=s[j].x+yyy; int sy2=s[j].y-xxx; if(searchh(j+1,n,star(sx1,sy1))&&searchh(j+1,n,star(sx2,sy2))) ans++; int sx3=s[i].x-yyy; int sy3=s[i].y+xxx; int sx4=s[j].x-yyy; int sy4=s[j].y+xxx; if(searchh(j+1,n,star(sx3,sy3))&&searchh(j+1,n,star(sx4,sy4))) ans++; } } printf("%lld\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/noooooorth/article/details/47051061