码迷,mamicode.com
首页 > 其他好文 > 详细

OpenCV图像细化的一个例子

时间:2015-07-25 12:04:12      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:

转自:http://blog.csdn.net/zfdxx369/article/details/9091953?utm_source=tuicool

本文是zhang的一篇经典图像细化论文,效果很好,采用并行计算,速度非常快;

下文是 "智慧视觉"在CSDN上对这篇论文程序的一个改造,亲测可用!

 

由于OpenCV没有自带的图像细化函数,网上提供的基本是基于1.0接口的,于是乎动手搞成2.0 Mat类型接口的,方便好用。细化方法当中,当属经典的Zhang并行快速细化算法,细化之后的轮廓走势与原图保持得相对较好.

 

//将 DEPTH_8U型二值图像进行细化  经典的Zhang并行快速细化算法
void thin(const Mat &src, Mat &dst, const int iterations)
{
    const int height =src.rows -1;
    const int width  =src.cols -1;

    //拷贝一个数组给另一个数组
    if(src.data != dst.data)
    {
        src.copyTo(dst);
    }
    

    int n = 0,i = 0,j = 0;
    Mat tmpImg;
    uchar *pU, *pC, *pD;
    BOOL isFinished =FALSE;

     for(n=0; n<iterations; n++)
     {
         dst.copyTo(tmpImg); 
         isFinished =FALSE;   //一次 先行后列扫描 开始
         //扫描过程一 开始
         for(i=1; i<height;  i++) 
        {
            pU = tmpImg.ptr<uchar>(i-1);
            pC = tmpImg.ptr<uchar>(i);
            pD = tmpImg.ptr<uchar>(i+1);
           for(int j=1; j<width; j++)
           {
            if(pC[j] > 0)
            {
                 int ap=0;
                 int p2 = (pU[j] >0);
                 int p3 = (pU[j+1] >0);
                 if (p2==0 && p3==1)
                 {
                  ap++;
                 }
                 int p4 = (pC[j+1] >0);
                 if(p3==0 && p4==1)
                 {
                  ap++;
                 }
                 int p5 = (pD[j+1] >0);
                 if(p4==0 && p5==1)
                 {
                  ap++;
                 }
                 int p6 = (pD[j] >0);
                 if(p5==0 && p6==1)
                 {
                  ap++;
                 }
                 int p7 = (pD[j-1] >0);
                 if(p6==0 && p7==1)
                 {
                  ap++;
                 }
                 int p8 = (pC[j-1] >0);
                 if(p7==0 && p8==1)
                 {
                  ap++;
                 }
                 int p9 = (pU[j-1] >0);
                 if(p8==0 && p9==1)
                 {
                  ap++;
                 }
                 if(p9==0 && p2==1)
                 {
                  ap++;
                 }
                 if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7)
                 {
                      if(ap==1)
                      {
                           if((p2*p4*p6==0)&&(p4*p6*p8==0))
                           {                           
                                dst.ptr<uchar>(i)[j]=0;
                                isFinished =TRUE;                            
                           }
                      
                        //   if((p2*p4*p8==0)&&(p2*p6*p8==0))
                       //    {                           
                       //         dst.ptr<uchar>(i)[j]=0;
                       //         isFinished =TRUE;                            
                       //    }
                       
                     }
                }                    
            }

           } //扫描过程一 结束

     
         dst.copyTo(tmpImg); 
         //扫描过程二 开始
         for(i=1; i<height;  i++)  //一次 先行后列扫描 开始
        {
            pU = tmpImg.ptr<uchar>(i-1);
            pC = tmpImg.ptr<uchar>(i);
            pD = tmpImg.ptr<uchar>(i+1);
           for(int j=1; j<width; j++)
           {
            if(pC[j] > 0)
            {
                 int ap=0;
                 int p2 = (pU[j] >0);
                 int p3 = (pU[j+1] >0);
                 if (p2==0 && p3==1)
                 {
                  ap++;
                 }
                 int p4 = (pC[j+1] >0);
                 if(p3==0 && p4==1)
                 {
                  ap++;
                 }
                 int p5 = (pD[j+1] >0);
                 if(p4==0 && p5==1)
                 {
                  ap++;
                 }
                 int p6 = (pD[j] >0);
                 if(p5==0 && p6==1)
                 {
                  ap++;
                 }
                 int p7 = (pD[j-1] >0);
                 if(p6==0 && p7==1)
                 {
                  ap++;
                 }
                 int p8 = (pC[j-1] >0);
                 if(p7==0 && p8==1)
                 {
                  ap++;
                 }
                 int p9 = (pU[j-1] >0);
                 if(p8==0 && p9==1)
                 {
                  ap++;
                 }
                 if(p9==0 && p2==1)
                 {
                  ap++;
                 }
                 if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7)
                 {
                      if(ap==1)
                      {
                        //   if((p2*p4*p6==0)&&(p4*p6*p8==0))
                        //   {                           
                       //         dst.ptr<uchar>(i)[j]=0;
                       //         isFinished =TRUE;                            
                       //    }
                      
                           if((p2*p4*p8==0)&&(p2*p6*p8==0))
                           {                           
                                dst.ptr<uchar>(i)[j]=0;
                                isFinished =TRUE;                            
                           }
                       
                     }
                }                    
            }

           }

          } //一次 先行后列扫描完成          
        //如果在扫描过程中没有删除点,则提前退出
         if(isFinished ==FALSE)
         {
            break; 
         }
        }

    }
}

 

OpenCV图像细化的一个例子

标签:

原文地址:http://www.cnblogs.com/meadow-glog/p/4675521.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!