标签:
Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
Sample Input
10 3
4 0.1
4 0.2
5 0.3
0 0
(1)题意:求Speakless可能得到至少一份offer的最大概率。
解法:直接求不好求,但是可以求它的对立面即一个都不能得到的最小概率,这样就把问题转化为了dp问题。只是求的是最小值,最后用1-dp(min)就行了。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int m,n;
double dp[10005];
int c[1005];
double w[10005];
int main()
{
while(scanf("%d %d",&m,&n),m!=0||n!=0)
{
int i,j;
for(i=0;i<n;i++)
{
scanf("%d %lf",&c[i],&w[i]);
w[i]=1-w[i];
}
for(i=0;i<=m;i++) dp[i]=1.0;
for(i=0;i<n;i++)
{
for(j=m;j>=c[i];j--)
{
dp[j]=min(dp[j],w[i]*dp[j-c[i]]);
}
}
printf("%.1f%%\n",(1-dp[m])*100);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/xtulollipop/article/details/47068811