标签:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874
思路分析:该问题给定一个无向图、起始点和终点,要求求出从起始点到终点的最短距离;
使用Dijkstra算法求出从起始点到所有的其他点的最短路长度即可,如果最短路长度为INT_MAX,表示从起始点到该点没有路径相连;
代码如下:
#include <queue> #include <climits> #include <cstdio> #include <vector> #include <utility> #include <cstring> #include <iostream> #include <algorithm> #include <functional> using namespace std; typedef pair<int, int> PII; const int MAX_N = 10000 + 10; const int MAX_M = 100 + 10; int u[MAX_N], v[MAX_N], w[MAX_N]; bool done[MAX_N]; int d[MAX_N]; vector<PII> G[MAX_N]; void Dijkstra(int start, int n) { priority_queue<PII, vector<PII>, greater<PII> > q; for (int i = 0; i < n; ++i) d[i] = (i == start ? 0 : INT_MAX); memset(done, NULL, sizeof(done)); q.push(make_pair(d[start], start)); while (!q.empty()) { PII x = q.top(); q.pop(); int u = x.second; if (done[u]) continue; done[u] = true; for (int i = 0; i < G[u].size(); ++i) { int v = G[u][i].first; int w = G[u][i].second; if (d[v] > d[u] + w) { d[v] = d[u] + w; q.push(make_pair(d[v], v)); } } } } int main() { int N, M; while (scanf("%d %d", &N, &M) != EOF && N && M) { int start, end; for (int e = 1; e <= M; ++e) { scanf("%d %d %d", &u[e], &v[e], &w[e]); G[u[e]].push_back(make_pair(v[e], w[e])); G[v[e]].push_back(make_pair(u[e], w[e])); } scanf("%d %d", &start, &end); Dijkstra(start, N); if (d[end] == INT_MAX) d[end] = -1; printf("%d\n", d[end]); for (int i = 0; i < N; ++i) G[i].clear(); } return 0; }
hdoj 1874 畅通工程续(单源最短路+dijkstra)
标签:
原文地址:http://www.cnblogs.com/tallisHe/p/4678125.html