码迷,mamicode.com
首页 > 其他好文 > 详细

scikit-learn:4.8. Transforming the prediction target (y)

时间:2015-07-26 19:18:24      阅读:216      评论:0      收藏:0      [点我收藏+]

标签:

参考:http://scikit-learn.org/stable/modules/preprocessing_targets.html


没什么好翻译的,直接给例子。


1、Label binarization

LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels:

>>>
>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
       [0, 0, 0, 1]])

Binary targets transform to a column vector

>>>
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform([‘yes‘, ‘no‘, ‘no‘, ‘yes‘])
array([[1],
       [0],
       [0],
       [1]])

Passing a 2D matrix for multilabel classification

>>>
>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0]])

For multiple labels per instance, use MultiLabelBinarizer:

>>>
>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],
       [0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])


2、Lable encoding

LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-1LabelEncoder can be used as follows:

>>>
>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels:

>>>
>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
[‘amsterdam‘, ‘paris‘, ‘tokyo‘]
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
[‘tokyo‘, ‘tokyo‘, ‘paris‘]









版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn:4.8. Transforming the prediction target (y)

标签:

原文地址:http://blog.csdn.net/mmc2015/article/details/47069869

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!