标签:project euler 排列 组合
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, ?, *, /) and brackets/parentheses, it is possible to form different positive integer targets.
For example,
8 = (4 * (1 + 3)) / 2
14 = 4 * (3 + 1 / 2)
19 = 4 * (2 + 3) ? 1
36 = 3 * 4 * (2 + 1)
Note that concatenations of the digits, like 12 + 34, are not allowed.
Using the set, {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number.
Find the set of four distinct digits, a < b < c < d, for which the longest set of consecutive positive integers, 1 to n, can be obtained, giving your answer as a string: abcd.
先求出10选4的所有组合情况,保存为list
对于每一种组合都有24种排列情况
每一个排列情况其运算顺序都有5种
关于四个数的运算涉及到3个操作符,而且每个操作符理论上有四种选择:加减乘除。并将得出的整数运算结果标记出来。
最终是要比较每一种组合的标记出来的结果,从1到n都有标记的最大的那个n
def xcombination(seq,length): if not length: yield [] else: for i in range(len(seq)): for result in xcombination(seq[i+1:],length-1): yield [seq[i]]+result def nextPermutation(self, num): if len(num) < 2: return num partition = -1 for i in range(len(num) - 2, -1, -1): if num[i] < num[i + 1]: partition = i break if partition == -1: return num[::-1] for i in range(len(num) - 1, partition, -1): if num[i] > num[partition]: num[i], num[partition] = num[partition], num[i] break num[partition + 1:] = num[partition + 1:][::-1] return num def ope(a,b,num): if a==None or b==None: return None if num == 1: return a+b if num == 2: return a-b if num == 3: return a*b if num == 4: if b == 0: return None else: return a/b comb=xcombination([i for i in range(10)],4) comb_list=list(comb) bestprem=[0 for i in range(4)] bestres=0 for prem in comb_list: tmp=prem flag=1 num_list=[0]*(9*8*7*6) while tmp != prem or flag==1: flag=0 for i in range(1,5): for j in range(1,5): for k in range(1,5): num=ope(ope(ope(prem[0],prem[1],i),prem[2],j),prem[3],k) if num!=None and num==int(num) and num > 0 and num < len(num_list): num_list[int(num)]=True num=ope(ope(prem[0],ope(prem[1],prem[2],j),i),prem[3],k) if num!=None and num==int(num) and num > 0 and num < len(num_list): num_list[int(num)]=True num=ope(prem[0],ope(ope(prem[1],prem[2],j),prem[3],k),i) if num!=None and num==int(num) and num > 0 and num < len(num_list): num_list[int(num)]=True num=ope(prem[0],ope(prem[1],ope(prem[2],prem[3],k),j),i) if num!=None and num==int(num) and num > 0 and num < len(num_list): num_list[int(num)]=True num=ope(ope(prem[0],prem[1],i),ope(prem[2],prem[3],k),j) if num!=None and num==int(num) and num > 0 and num < len(num_list): num_list[int(num)]=True count=1 while num_list[count]==True: count=count+1 if count > bestres: bestres=count bestprem=prem prem=nextPermutation((),[prem[i] for i in range(4)]) print(bestres,' ',bestprem)
版权声明:本文为博主原创文章,未经博主允许不得转载。
Project Euler:Problem 93 Arithmetic expressions
标签:project euler 排列 组合
原文地址:http://blog.csdn.net/youb11/article/details/47068341