码迷,mamicode.com
首页 > 其他好文 > 详细

STL源码剖析(4):容器(list)

时间:2015-07-27 13:16:10      阅读:130      评论:0      收藏:0      [点我收藏+]

标签:stl   源码   list   

  相较于vector的连续线性空间,list就显得复杂许多,它的好处是每次插入或删除一个元素,就配置或释放一个元素空间。因此,list对于空间的运用有绝对的精准,一点也不浪费。而且,对于任何位置的元素插入或元素移除,list永远是常数时间。

  list 内部为双向链表,内部元素互相以link串接起来,每个元素都知道其前一个元素以及下一个元素的位置。

template <class T>
struct __list_node {
  typedef void* void_pointer;
  void_pointer next;
  void_pointer prev;
  T data;
};

  list节点并不一定在连续空间上,所以不能像vector一样用原生指针做迭代器,其迭代器必须实现前移、后移、取值等操作。
list插入操作和接合操作都不会造成原有的list迭代器失效,这在vector是不成立的。因为vector的插入操作可能造成内存重新配置,导致原有的迭代器全部失效。甚至list的元素删除操作(erase),也只有“指向被删除元素”的那个迭代器失效,其他迭代器不受任何影响。
   
  技术分享 

  来看源码:

template<class T, class Ref, class Ptr>
struct __list_iterator {
  typedef __list_iterator<T, T&, T*>             iterator;
  typedef __list_iterator<T, const T&, const T*> const_iterator;
  typedef __list_iterator<T, Ref, Ptr>           self;

  typedef bidirectional_iterator_tag iterator_category;
  typedef T value_type;
  typedef Ptr pointer;
  typedef Ref reference;
  typedef __list_node<T>* link_type;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;

  link_type node; //内部保留一个原生指针,指向list结点

  __list_iterator(link_type x) : node(x) {}
  __list_iterator() {}
  __list_iterator(const iterator& x) : node(x.node) {}

  bool operator==(const self& x) const { return node == x.node; }
  bool operator!=(const self& x) const { return node != x.node; }
  reference operator*() const { return (*node).data; }

  self& operator++() { 
    node = (link_type)((*node).next);
    return *this;
  }
  self operator++(int) { 
    self tmp = *this;
    ++*this;
    return tmp;
  }
  self& operator--() { 
    node = (link_type)((*node).prev);
    return *this;
  }
  self operator--(int) { 
    self tmp = *this;
    --*this;
    return tmp;
  }
};

template <class T, class Alloc = alloc>
class list {
protected:
  typedef void* void_pointer;
  typedef __list_node<T> list_node;
  typedef simple_alloc<list_node, Alloc> list_node_allocator;

public:
  typedef __list_iterator<T, T&, T*>             iterator;
  typedef __list_iterator<T, const T&, const T*> const_iterator;

protected:
  link_type node;

protected:
  link_type get_node() { return list_node_allocator::allocate(); }
  void put_node(link_type p) { list_node_allocator::deallocate(p); }

  link_type create_node(const T& x) {
    link_type p = get_node();
    __STL_TRY {
      construct(&p->data, x);
    }
    __STL_UNWIND(put_node(p));
    return p;
  }
  void destroy_node(link_type p) {
    destroy(&p->data);
    put_node(p);
  }

protected:
  void empty_initialize() { 
    node = get_node();
    node->next = node;
    node->prev = node;
  }

  void fill_initialize(size_type n, const T& value) {
    empty_initialize();
    __STL_TRY {
      insert(begin(), n, value);
    }
    __STL_UNWIND(clear(); put_node(node));
  }

protected: //将[first,last)内元素迁移到position处
  void transfer(iterator position, iterator first, iterator last) {
    if (position != last) {
      (*(link_type((*last.node).prev))).next = position.node;
      (*(link_type((*first.node).prev))).next = last.node;
      (*(link_type((*position.node).prev))).next = first.node;  
      link_type tmp = link_type((*position.node).prev);
      (*position.node).prev = (*last.node).prev;
      (*last.node).prev = (*first.node).prev; 
      (*first.node).prev = tmp;
    }
  }  

public:
  void splice(iterator position, list& x) {
    if (!x.empty()) 
      transfer(position, x.begin(), x.end());
  }  

public:
  list() { empty_initialize(); }

  iterator begin() { return (link_type)((*node).next); }
  const_iterator begin() const { return (link_type)((*node).next); }
  iterator end() { return node; }
  const_iterator end() const { return node; }

  bool empty() const { return node->next == node; }
  size_type size() const {
    size_type result = 0;
    distance(begin(), end(), result);
    return result;
  }
  size_type max_size() const { return size_type(-1); }
  reference front() { return *begin(); }
  const_reference front() const { return *begin(); }
  reference back() { return *(--end()); }
  const_reference back() const { return *(--end()); }
  void swap(list<T, Alloc>& x) { __STD::swap(node, x.node); }
  iterator insert(iterator position, const T& x) {
    link_type tmp = create_node(x);
    tmp->next = position.node;
    tmp->prev = position.node->prev;
    (link_type(position.node->prev))->next = tmp;
    position.node->prev = tmp;
    return tmp;
  }

  void push_front(const T& x) { insert(begin(), x); }
  void push_back(const T& x) { insert(end(), x); }
  iterator erase(iterator position) {
    link_type next_node = link_type(position.node->next);
    link_type prev_node = link_type(position.node->prev);
    prev_node->next = next_node;
    next_node->prev = prev_node;
    destroy_node(position.node);
    return iterator(next_node);
  }

  void pop_front() { erase(begin()); }
  void pop_back() { 
    iterator tmp = end();
    erase(--tmp);
  }  
};

template <class T, class Alloc>
void list<T, Alloc>::merge(list<T, Alloc>& x) { //归并排序,归并操作
  iterator first1 = begin();
  iterator last1 = end();
  iterator first2 = x.begin();
  iterator last2 = x.end();
  while (first1 != last1 && first2 != last2)
    if (*first2 < *first1) {
      iterator next = first2;
      transfer(first1, first2, ++next);
      first2 = next;
    }
    else
      ++first1;
  if (first2 != last2) transfer(last1, first2, last2);
}

//1)Creates a series of buckets (64 total).
//2)Removes the first element of the list to sort and merges it with the first (i=0th) bucket.
//3)If, before the merge, the ith bucket is not empty, merge the ith bucket with the i+1th bucket.
//4)Repeat step 3 until we merge with an empty bucket.
//5)Repeat step 2 and 3 until the list to sort is empty.
//6)Merge all the remaining non-empty buckets together starting from smallest to largest.
template <class T, class Alloc>
void list<T, Alloc>::sort() {
  if (node->next == node || link_type(node->next)->next == node) return;
  list<T, Alloc> carry;
  list<T, Alloc> counter[64];
  int fill = 0;
  while (!empty()) {
    carry.splice(carry.begin(), *this, begin());  //将begin处的元素从list取下,insert到carry中
    int i = 0;
    while(i < fill && !counter[i].empty()) {
      counter[i].merge(carry);
      carry.swap(counter[i++]);
    }
    carry.swap(counter[i]);         
    if (i == fill) ++fill;
  } 

  for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]);
  swap(counter[fill-1]);
}

template <class T, class Alloc> template <class Predicate>
void list<T, Alloc>::remove_if(Predicate pred) {
  iterator first = begin();
  iterator last = end();
  while (first != last) {
    iterator next = first;
    ++next;
    if (pred(*first)) erase(first);
    first = next;
  }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

STL源码剖析(4):容器(list)

标签:stl   源码   list   

原文地址:http://blog.csdn.net/kzq_qmi/article/details/47082891

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!