Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 19826 | Accepted: 5299 |
Description
for (variable = A; variable != B; variable += C) statement;
Input
Output
Sample Input
3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
Sample Output
0 2 32766 FOREVER
Source
还是扩展欧几里得,这里注意要简化一下原来的式子
AC代码:
#include <map> #include <set> #include <cmath> #include <deque> #include <queue> #include <stack> #include <cstdio> #include <cctype> #include <string> #include <vector> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define LL long long #define INF 0x7fffffff using namespace std; LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } void exgcd(LL a, LL b, LL& x, LL& y) { if(b == 0) { x = 1; y = 0; } else { exgcd(b, a % b, y, x); y -= x * (a / b); } } int main() { LL A, B, C, k; while(scanf("%I64d %I64d %I64d %I64d", &A, &B, &C, &k) != EOF) { if(A == 0 && B == 0 && C == 0 && k == 0) break; if(A == B) { printf("0\n"); continue; } LL a = C; LL b = (1LL << k); LL c = gcd(a, b); LL d = B - A; if(d % c != 0) { printf("FOREVER\n"); continue; } a /= c;//这里要进行简化,因为可能产生多余的次数 b /= c; d /= c; LL p, q; exgcd(a, b, p, q);//这里求的是最简ax+by=gcd(a,b)的一组x,y的解 printf("%I64d\n", (p * (d / gcd(a, b)) % b + b) % b); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ - 2115 - C Looooops (扩展欧几里得)
原文地址:http://blog.csdn.net/u014355480/article/details/47084159