标签:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3062
思路分析:将问题转换为2-SAT问题,需要注意的是将命题转换为有向图的方法;命题中A1, A2, C1, C2表示C1与C2不能同时出现,所以A1中C1出现等价于A2中C2 ^ 1出现,同理A2中C2出现等价于A1中C1^1出现,则形成了两条有向边;
代码如下:
#include <cstdio> #include <vector> #include <cstring> #include <iostream> using namespace std; const int MAX_N = 1000 + 10; struct TwoSAT { int n; vector<int> G[2 * MAX_N]; bool mark[2 * MAX_N]; int S[2 * MAX_N], c; void Init(int n) { this->n = n; for (int i = 0; i <= 2 * n; ++i) G[i].clear(); memset(mark, 0, sizeof(mark)); } bool Dfs(int x) { if (mark[x ^ 1]) return false; if (mark[x]) return true; mark[x] = true; S[c++] = x; for (int i = 0; i < G[x].size(); ++i) if (!Dfs(G[x][i])) return false; return true; } void AddClause(int x, int x_val, int y, int y_val) { x = 2 * x + x_val; y = 2 * y + y_val; G[x].push_back(y ^ 1); G[y].push_back(x ^ 1); } bool Solve() { for (int i = 0; i < 2 * n; i += 2) { if (!mark[i] && !mark[i + 1]) { c = 0; if (!Dfs(i)) { while (c > 0) mark[S[--c]] = false; if (!Dfs(i + 1)) return false; } } } return true; } }; TwoSAT sat; int main() { int n, m; while (scanf("%d", &n) != EOF) { scanf("%d", &m); sat.Init(n); for (int i = 0; i < m; ++i) { int x, x_val, y, y_val; scanf("%d %d %d %d", &x, &y, &x_val, &y_val); sat.AddClause(x, x_val, y, y_val); } bool ans = sat.Solve(); if (ans) printf("YES\n"); else printf("NO\n"); } return 0; }
标签:
原文地址:http://www.cnblogs.com/tallisHe/p/4680918.html