码迷,mamicode.com
首页 > 其他好文 > 详细

二叉排序树

时间:2014-07-09 13:12:09      阅读:160      评论:0      收藏:0      [点我收藏+]

标签:二叉排序树

二叉排序树(Binary Sort Tree):或者是一颗空树,或者是具有以下性质的树:(1)若它的左子树不空,则左子树上所以结点的值均小于它的根节点的值;(2)若它的右子树不空,则右子树上的所以结点的值均大于它的根节点的值;(3)它的左、右子树也分别是二叉排序树。

二叉排序树的基本操作均可以在O(h)时间内完成(算法导论p165)。

相关操作代码如下:

int InsertBST(BiTree &T, int key)//递归插入
{
	if (T == NULL)
	{
		T = new BiNode;
		T->data = key;
		T->lchild = T->rchild = NULL;
		return 1;
	}
	else
	{
		if (key == T->data)
			return 0;
		else if (key < T->data)
			return InsertBST(T->lchild, key);
		else
			return InsertBST(T->rchild, key);
	}
}

int InsertBST_(BiTree &T, int key)//迭代插入
{
	//find the insert position
	BiNode *f = T, *p = T;
	while (p != NULL)
	{
		if (key == p->data)
			return 0;
		f = p;	//记录上一次访问的结点
		p = key < p->data ? p->lchild : p->rchild;
	}

	//分配新结点
	BiNode *q = new BiNode;
	q->lchild = q->rchild = NULL;
	q->data = key;

	//插入
	if (T == NULL)	//若根为空
	{
		T = q;
		return 1;
	}
	if (key < f->data)
		f->lchild = q;
	else
		f->rchild = q;
	return 1;
}

BiNode *SearchBST(BiTree T, int key)//递归搜索
{
	if (!T)
		return NULL;
	else
	{
		if (key == T->data)
			return T;
		else if (key < T->data)
			return SearchBST(T->lchild, key);
		else
			return SearchBST(T->rchild, key);
	}
}

BiNode* SearchBST_(BiTree T, int key)//迭代搜索
{
	while (T != NULL)
	{
		if (key == T->data)
			break;
		T = key < T->data ? T->lchild : T->rchild;
	}
	return T;
}

int DeleteNode(BiNode *&p)
{
	BiNode *q;
	//从二叉排序树中删除结点p,并重接它的的左或右子树
	if (p == NULL)	return 0;
	if (p->lchild == NULL)	 //左子树空则只需重接右子树
	{
		q = p; p = p->rchild; delete q;
	}
	else if (p->rchild == NULL)	  //右子树空则只需重接左子树
	{
		q = p; 
		p = p->lchild; 
		delete q;
	}
	else	//左右子树均不空
	{
		BiNode *s;
#if 0	
		//用p的直接前驱代替p,然后删除p的直接前驱
		q = p; s = p->lchild;//转左,然后向右到尽头
		while (s->rchild)
		{
			q = s; s = s->rchild;
		}
		p->data = s->data;	//s指向被删除结点,q指向被删除结点的前驱
		if (q != p)
			q->rchild = s->lchild;	//重接q的右子树
		else
			q->lchild = s->lchild;	//重接q的左子树
#else
		//用p的直接后继代替p,然后删除p的直接后继
		q = p; s = p->rchild;
		while (s->lchild)
		{
			q = s; s = s->lchild;
		}
		p->data = s->data;
		if (p != p)
			q->lchild = s->rchild;
		else
			q->rchild = s->rchild;
#endif
		delete s;
	}
	return 1;
}

int DeleteBST(BiTree &T, int key)
{
	if (T == NULL)
		return 0;
	else
	{
		if (key == T->data)
			return DeleteNode(T);
		else if (key < T->data)
			return DeleteBST(T->lchild, key);
		else
			return DeleteBST(T->rchild, key);
	}
}

void CreateBST(BiTree &T, int a[], int n)
{
	T = NULL;
	for (int i = 0; i < n; i++)
	{
		InsertBST_(T, a[i]);
	}
}

void DestoryBST(BiTree &T)
{
	if (T == NULL)
		return;
	DestoryBST(T->lchild);
	DestoryBST(T->rchild);
	delete T; T = NULL;
}

void InOrderTraverse(BiTree T)//=O(n)时间复杂度
{
	if (T == NULL)
		return;
	InOrderTraverse(T->lchild);
	cout << T->data << " ";
	InOrderTraverse(T->rchild);
}
测试代码:

int main()
{
	const int n = 10;
	int a[n] = {3, 2, 8, 6, 1, 4, 5, 7, 1, 3};
	BiTree T;
	CreateBST(T, a, n);
	InOrderTraverse(T);
	cout << endl;

	BiNode *p;
	for (int i = 1; i < 10; i++)
	{
		p = SearchBST_(T, i);
		if (p != NULL)
			cout << p->data << endl;
	}

	int b[5]={0, 2, 6, 1, 7};
	int ret;
	for (int i = 0; i < 5; i++)
	{
		ret = DeleteBST(T, b[i]);
		if (ret == 0)
			cout << "删除 " << b[i] << " 失败" << endl;
		else
		{
			cout << "删除 " << b[i] << " 后: " ;
			InOrderTraverse(T);
			cout << endl;
		}
	}

	DestoryBST(T);
	getchar();
	return 0;
}

参考:数据结构C语言版、算法导论(关于删除结点操作,该书p173页有注记)


二叉排序树,布布扣,bubuko.com

二叉排序树

标签:二叉排序树

原文地址:http://blog.csdn.net/u013071074/article/details/37579913

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!